Skip to content

Conversation

@dependabot
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github Apr 1, 2025

Bumps pytest-cov from 6.0.0 to 6.1.0.

Changelog

Sourced from pytest-cov's changelog.

6.1.0 (2025-04-01)

  • Change terminal output to use full width lines for the coverage header. Contributed by Tsvika Shapira in [#678](https://github.com/pytest-dev/pytest-cov/issues/678) <https://github.com/pytest-dev/pytest-cov/pull/678>_.
  • Removed unnecessary CovFailUnderWarning. Fixes [#675](https://github.com/pytest-dev/pytest-cov/issues/675) <https://github.com/pytest-dev/pytest-cov/issues/675>_.
  • Fixed the term report not using the precision specified via --cov-precision.
Commits
  • 10f8cde Bump version: 6.0.0 → 6.1.0
  • 10b14af Update changelog.
  • aa57aed Refactor a bit the internals to be a bit less boilerplatey and have more clar...
  • e760099 Make sure the CLI precision is used when creating report. Fixes #674.
  • 44540e1 Remove unnecessary CovFailUnderWarning. Closes #675.
  • 204af14 Update changelog.
  • 089e7bb Upgrade ruff.
  • ab2cd26 Add py 3.13 to test grid and update some deps.
  • 2de0c6c add reference to code source
  • 362a359 move section between functions
  • Additional commits viewable in compare view

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Bumps [pytest-cov](https://github.com/pytest-dev/pytest-cov) from 6.0.0 to 6.1.0.
- [Changelog](https://github.com/pytest-dev/pytest-cov/blob/master/CHANGELOG.rst)
- [Commits](pytest-dev/pytest-cov@v6.0.0...v6.1.0)

---
updated-dependencies:
- dependency-name: pytest-cov
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <[email protected]>
@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Apr 1, 2025
@changeset-bot
Copy link

changeset-bot bot commented Apr 1, 2025

⚠️ No Changeset found

Latest commit: 6c8c837

Merging this PR will not cause a version bump for any packages. If these changes should not result in a new version, you're good to go. If these changes should result in a version bump, you need to add a changeset.

Click here to learn what changesets are, and how to add one.

Click here if you're a maintainer who wants to add a changeset to this PR

@github-actions
Copy link

github-actions bot commented Apr 1, 2025

Dependency Review

✅ No vulnerabilities or license issues or OpenSSF Scorecard issues found.

OpenSSF Scorecard

PackageVersionScoreDetails
pip/pytest-cov ~> 6.1 🟢 5.1
Details
CheckScoreReason
Maintained🟢 1018 commit(s) and 7 issue activity found in the last 90 days -- score normalized to 10
Code-Review⚠️ 2Found 3/13 approved changesets -- score normalized to 2
Packaging⚠️ -1packaging workflow not detected
Token-Permissions⚠️ 0detected GitHub workflow tokens with excessive permissions
Security-Policy🟢 10security policy file detected
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
Binary-Artifacts🟢 10no binaries found in the repo
Pinned-Dependencies⚠️ 0dependency not pinned by hash detected -- score normalized to 0
CII-Best-Practices⚠️ 0no effort to earn an OpenSSF best practices badge detected
Fuzzing⚠️ 0project is not fuzzed
License🟢 10license file detected
Signed-Releases⚠️ -1no releases found
Branch-Protection⚠️ -1internal error: error during branchesHandler.setup: internal error: githubv4.Query: Resource not accessible by integration
Vulnerabilities🟢 46 existing vulnerabilities detected
SAST⚠️ 0SAST tool is not run on all commits -- score normalized to 0
pip/coverage 7.8.0 🟢 8.5
Details
CheckScoreReason
Maintained🟢 1030 commit(s) and 24 issue activity found in the last 90 days -- score normalized to 10
Code-Review⚠️ 0Found 1/28 approved changesets -- score normalized to 0
Security-Policy🟢 10security policy file detected
License🟢 10license file detected
Vulnerabilities🟢 100 existing vulnerabilities detected
Binary-Artifacts🟢 10no binaries found in the repo
CII-Best-Practices🟢 5badge detected: Passing
Token-Permissions🟢 10GitHub workflow tokens follow principle of least privilege
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
Signed-Releases⚠️ -1no releases found
Fuzzing🟢 10project is fuzzed
Branch-Protection⚠️ -1internal error: error during branchesHandler.setup: internal error: githubv4.Query: Resource not accessible by integration
Pinned-Dependencies🟢 5dependency not pinned by hash detected -- score normalized to 5
Packaging🟢 10packaging workflow detected
SAST🟢 10SAST tool is run on all commits
pip/pytest-cov 6.1.0 🟢 5.1
Details
CheckScoreReason
Maintained🟢 1018 commit(s) and 7 issue activity found in the last 90 days -- score normalized to 10
Code-Review⚠️ 2Found 3/13 approved changesets -- score normalized to 2
Packaging⚠️ -1packaging workflow not detected
Token-Permissions⚠️ 0detected GitHub workflow tokens with excessive permissions
Security-Policy🟢 10security policy file detected
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
Binary-Artifacts🟢 10no binaries found in the repo
Pinned-Dependencies⚠️ 0dependency not pinned by hash detected -- score normalized to 0
CII-Best-Practices⚠️ 0no effort to earn an OpenSSF best practices badge detected
Fuzzing⚠️ 0project is not fuzzed
License🟢 10license file detected
Signed-Releases⚠️ -1no releases found
Branch-Protection⚠️ -1internal error: error during branchesHandler.setup: internal error: githubv4.Query: Resource not accessible by integration
Vulnerabilities🟢 46 existing vulnerabilities detected
SAST⚠️ 0SAST tool is not run on all commits -- score normalized to 0

Scanned Files

  • Pipfile
  • Pipfile.lock

@github-actions
Copy link

github-actions bot commented Apr 1, 2025

README stats current output:

Code Time

Profile Views

Lines of code

🐱 My GitHub Data

📦 1.3 MB Used in GitHub's Storage

🏆 316 Contributions in the Year 2025

💼 Opted to Hire

📜 383 Public Repositories

🔑 125 Private Repositories

I'm an Early 🐤

🌞 Morning                4311 commits        ███████░░░░░░░░░░░░░░░░░░   29.04 % 
🌆 Daytime                4475 commits        ████████░░░░░░░░░░░░░░░░░   30.15 % 
🌃 Evening                5863 commits        ██████████░░░░░░░░░░░░░░░   39.50 % 
🌙 Night                  194 commits         ░░░░░░░░░░░░░░░░░░░░░░░░░   01.31 % 

📅 I'm Most Productive on Friday

Monday                   1511 commits        ███░░░░░░░░░░░░░░░░░░░░░░   10.18 % 
Tuesday                  1975 commits        ███░░░░░░░░░░░░░░░░░░░░░░   13.31 % 
Wednesday                1829 commits        ███░░░░░░░░░░░░░░░░░░░░░░   12.32 % 
Thursday                 1973 commits        ███░░░░░░░░░░░░░░░░░░░░░░   13.29 % 
Friday                   3452 commits        ██████░░░░░░░░░░░░░░░░░░░   23.26 % 
Saturday                 2776 commits        █████░░░░░░░░░░░░░░░░░░░░   18.70 % 
Sunday                   1327 commits        ██░░░░░░░░░░░░░░░░░░░░░░░   08.94 % 

📊 This Week I Spent My Time On

🕑︎ Time Zone: Asia/Jakarta

💬 Programming Languages: 
Markdown                 1 hr 27 mins        ███████░░░░░░░░░░░░░░░░░░   26.37 % 
TypeScript               1 hr 19 mins        ██████░░░░░░░░░░░░░░░░░░░   23.87 % 
JSON                     1 hr 18 mins        ██████░░░░░░░░░░░░░░░░░░░   23.51 % 
CSS                      32 mins             ██░░░░░░░░░░░░░░░░░░░░░░░   09.88 % 
Other                    15 mins             █░░░░░░░░░░░░░░░░░░░░░░░░   04.76 % 

🔥 Editors: 
Cursor                   5 hrs 32 mins       █████████████████████████   100.00 % 

🐱‍💻 Projects: 
landing-wecoded          1 hr 18 mins        ██████░░░░░░░░░░░░░░░░░░░   23.44 % 
redocly                  46 mins             ███░░░░░░░░░░░░░░░░░░░░░░   13.87 % 
migrate-catalog          40 mins             ███░░░░░░░░░░░░░░░░░░░░░░   12.23 % 
mra-hanko-next           39 mins             ███░░░░░░░░░░░░░░░░░░░░░░   11.95 % 
ccc                      38 mins             ███░░░░░░░░░░░░░░░░░░░░░░   11.54 % 

💻 Operating System: 
Mac                      5 hrs 32 mins       █████████████████████████   100.00 % 

I Mostly Code in TypeScript

TypeScript               150 repos           ███████████░░░░░░░░░░░░░░   42.86 % 
Python                   8 repos             █░░░░░░░░░░░░░░░░░░░░░░░░   02.29 % 
MDX                      5 repos             ░░░░░░░░░░░░░░░░░░░░░░░░░   01.43 % 
Shell                    3 repos             ░░░░░░░░░░░░░░░░░░░░░░░░░   00.86 % 
Lua                      1 repo              ░░░░░░░░░░░░░░░░░░░░░░░░░   00.29 % 

Timeline

You can use this website to view the generated base64 image.



Last Updated on 01/04/2025 14:35:59 UTC

@dependabot @github
Copy link
Contributor Author

dependabot bot commented on behalf of github Apr 7, 2025

A newer version of pytest-cov exists, but since this PR has been edited by someone other than Dependabot I haven't updated it. You'll get a PR for the updated version as normal once this PR is merged.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

dependencies Pull requests that update a dependency file python Pull requests that update Python code

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant