-
Notifications
You must be signed in to change notification settings - Fork 32
Allow Python scalars as the search values in dpt.searchsorted
#2225
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,23 +1,29 @@ | ||
| from typing import Literal, Union | ||
|
|
||
| import dpctl | ||
| import dpctl.tensor as dpt | ||
| import dpctl.utils as du | ||
|
|
||
| from ._copy_utils import _empty_like_orderK | ||
| from ._ctors import empty | ||
| from ._scalar_utils import _get_dtype, _get_queue_usm_type, _validate_dtype | ||
| from ._tensor_impl import _copy_usm_ndarray_into_usm_ndarray as ti_copy | ||
| from ._tensor_impl import _take as ti_take | ||
| from ._tensor_impl import ( | ||
| default_device_index_type as ti_default_device_index_type, | ||
| ) | ||
| from ._tensor_sorting_impl import _searchsorted_left, _searchsorted_right | ||
| from ._type_utils import isdtype, result_type | ||
| from ._type_utils import ( | ||
| _resolve_weak_types_all_py_ints, | ||
| _to_device_supported_dtype, | ||
| isdtype, | ||
| ) | ||
| from ._usmarray import usm_ndarray | ||
|
|
||
|
|
||
| def searchsorted( | ||
| x1: usm_ndarray, | ||
| x2: usm_ndarray, | ||
| x2: Union[usm_ndarray, int, float, complex, bool], | ||
| /, | ||
| *, | ||
| side: Literal["left", "right"] = "left", | ||
|
|
@@ -34,8 +40,8 @@ def searchsorted( | |
| input array. Must be a one-dimensional array. If `sorter` is | ||
| `None`, must be sorted in ascending order; otherwise, `sorter` must | ||
| be an array of indices that sort `x1` in ascending order. | ||
| x2 (usm_ndarray): | ||
| array containing search values. | ||
| x2 (Union[usm_ndarray, bool, int, float, complex]): | ||
| search value or values. | ||
| side (Literal["left", "right]): | ||
| argument controlling which index is returned if a value lands | ||
| exactly on an edge. If `x2` is an array of rank `N` where | ||
|
|
@@ -56,8 +62,6 @@ def searchsorted( | |
| """ | ||
| if not isinstance(x1, usm_ndarray): | ||
| raise TypeError(f"Expected dpctl.tensor.usm_ndarray, got {type(x1)}") | ||
| if not isinstance(x2, usm_ndarray): | ||
| raise TypeError(f"Expected dpctl.tensor.usm_ndarray, got {type(x2)}") | ||
| if sorter is not None and not isinstance(sorter, usm_ndarray): | ||
| raise TypeError( | ||
| f"Expected dpctl.tensor.usm_ndarray, got {type(sorter)}" | ||
|
|
@@ -69,23 +73,39 @@ def searchsorted( | |
| "Expected either 'left' or 'right'" | ||
| ) | ||
|
|
||
| if sorter is None: | ||
| q = du.get_execution_queue([x1.sycl_queue, x2.sycl_queue]) | ||
| else: | ||
| q = du.get_execution_queue( | ||
| [x1.sycl_queue, x2.sycl_queue, sorter.sycl_queue] | ||
| ) | ||
| q1, x1_usm_type = x1.sycl_queue, x1.usm_type | ||
| q2, x2_usm_type = _get_queue_usm_type(x2) | ||
| q3 = sorter.sycl_queue if sorter is not None else None | ||
| q = du.get_execution_queue(tuple(q for q in (q1, q2, q3) if q is not None)) | ||
| if q is None: | ||
| raise du.ExecutionPlacementError( | ||
| "Execution placement can not be unambiguously " | ||
| "inferred from input arguments." | ||
| ) | ||
|
|
||
| res_usm_type = du.get_coerced_usm_type( | ||
| tuple( | ||
| ut | ||
| for ut in ( | ||
| x1_usm_type, | ||
| x2_usm_type, | ||
| ) | ||
| if ut is not None | ||
| ) | ||
| ) | ||
| du.validate_usm_type(res_usm_type, allow_none=False) | ||
| sycl_dev = q.sycl_device | ||
|
|
||
| if x1.ndim != 1: | ||
| raise ValueError("First argument array must be one-dimensional") | ||
|
|
||
| x1_dt = x1.dtype | ||
| x2_dt = x2.dtype | ||
| x2_dt = _get_dtype(x2, sycl_dev) | ||
| if not _validate_dtype(x2_dt): | ||
| raise ValueError( | ||
| "dpt.searchsorted search value argument has " | ||
| f"unsupported data type {x2_dt}" | ||
| ) | ||
|
|
||
| _manager = du.SequentialOrderManager[q] | ||
| dep_evs = _manager.submitted_events | ||
|
|
@@ -100,7 +120,7 @@ def searchsorted( | |
| "Sorter array must be one-dimension with the same " | ||
| "shape as the first argument array" | ||
| ) | ||
| res = empty(x1.shape, dtype=x1_dt, usm_type=x1.usm_type, sycl_queue=q) | ||
| res = empty(x1.shape, dtype=x1_dt, usm_type=x1_usm_type, sycl_queue=q) | ||
| ind = (sorter,) | ||
| axis = 0 | ||
| wrap_out_of_bound_indices_mode = 0 | ||
|
|
@@ -116,29 +136,28 @@ def searchsorted( | |
| x1 = res | ||
| _manager.add_event_pair(ht_ev, ev) | ||
|
|
||
| if x1_dt != x2_dt: | ||
| dt = result_type(x1, x2) | ||
| if x1_dt != dt: | ||
| x1_buf = _empty_like_orderK(x1, dt) | ||
| dep_evs = _manager.submitted_events | ||
| ht_ev, ev = ti_copy( | ||
| src=x1, dst=x1_buf, sycl_queue=q, depends=dep_evs | ||
| ) | ||
| _manager.add_event_pair(ht_ev, ev) | ||
| x1 = x1_buf | ||
| if x2_dt != dt: | ||
| x2_buf = _empty_like_orderK(x2, dt) | ||
| dep_evs = _manager.submitted_events | ||
| ht_ev, ev = ti_copy( | ||
| src=x2, dst=x2_buf, sycl_queue=q, depends=dep_evs | ||
| ) | ||
| _manager.add_event_pair(ht_ev, ev) | ||
| x2 = x2_buf | ||
| dt1, dt2 = _resolve_weak_types_all_py_ints(x1_dt, x2_dt, sycl_dev) | ||
| dt = _to_device_supported_dtype(dpt.result_type(dt1, dt2), sycl_dev) | ||
|
|
||
| if x1_dt != dt: | ||
| x1_buf = _empty_like_orderK(x1, dt) | ||
| dep_evs = _manager.submitted_events | ||
| ht_ev, ev = ti_copy(src=x1, dst=x1_buf, sycl_queue=q, depends=dep_evs) | ||
| _manager.add_event_pair(ht_ev, ev) | ||
| x1 = x1_buf | ||
|
|
||
| if not isinstance(x2, usm_ndarray): | ||
| x2 = dpt.asarray(x2, dtype=dt2, usm_type=res_usm_type, sycl_queue=q) | ||
| if x2.dtype != dt: | ||
| x2_buf = _empty_like_orderK(x2, dt) | ||
| dep_evs = _manager.submitted_events | ||
| ht_ev, ev = ti_copy(src=x2, dst=x2_buf, sycl_queue=q, depends=dep_evs) | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Copying |
||
| _manager.add_event_pair(ht_ev, ev) | ||
| x2 = x2_buf | ||
|
|
||
| dst_usm_type = du.get_coerced_usm_type([x1.usm_type, x2.usm_type]) | ||
| index_dt = ti_default_device_index_type(q) | ||
|
|
||
| dst = _empty_like_orderK(x2, index_dt, usm_type=dst_usm_type) | ||
| dst = _empty_like_orderK(x2, index_dt, usm_type=res_usm_type) | ||
|
|
||
| dep_evs = _manager.submitted_events | ||
| if side == "left": | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,3 +1,21 @@ | ||
| # Data Parallel Control (dpctl) | ||
| # | ||
| # Copyright 2020-2025 Intel Corporation | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import ctypes | ||
|
|
||
| import numpy as np | ||
| import pytest | ||
|
|
||
|
|
@@ -7,6 +25,30 @@ | |
|
|
||
| from .helper import get_queue_or_skip, skip_if_dtype_not_supported | ||
|
|
||
| _integer_dtypes = [ | ||
| "i1", | ||
| "u1", | ||
| "i2", | ||
| "u2", | ||
| "i4", | ||
| "u4", | ||
| "i8", | ||
| "u8", | ||
| ] | ||
|
|
||
| _floating_dtypes = [ | ||
| "f2", | ||
| "f4", | ||
| "f8", | ||
| ] | ||
|
|
||
| _complex_dtypes = [ | ||
| "c8", | ||
| "c16", | ||
| ] | ||
|
|
||
| _all_dtypes = ["?"] + _integer_dtypes + _floating_dtypes + _complex_dtypes | ||
|
|
||
|
|
||
| def _check(hay_stack, needles, needles_np): | ||
| assert hay_stack.dtype == needles.dtype | ||
|
|
@@ -73,19 +115,7 @@ def test_searchsorted_strided_bool(): | |
| ) | ||
|
|
||
|
|
||
| @pytest.mark.parametrize( | ||
| "idt", | ||
| [ | ||
| dpt.int8, | ||
| dpt.uint8, | ||
| dpt.int16, | ||
| dpt.uint16, | ||
| dpt.int32, | ||
| dpt.uint32, | ||
| dpt.int64, | ||
| dpt.uint64, | ||
| ], | ||
| ) | ||
| @pytest.mark.parametrize("idt", _integer_dtypes) | ||
| def test_searchsorted_contig_int(idt): | ||
| q = get_queue_or_skip() | ||
| skip_if_dtype_not_supported(idt, q) | ||
|
|
@@ -105,19 +135,7 @@ def test_searchsorted_contig_int(idt): | |
| ) | ||
|
|
||
|
|
||
| @pytest.mark.parametrize( | ||
| "idt", | ||
| [ | ||
| dpt.int8, | ||
| dpt.uint8, | ||
| dpt.int16, | ||
| dpt.uint16, | ||
| dpt.int32, | ||
| dpt.uint32, | ||
| dpt.int64, | ||
| dpt.uint64, | ||
| ], | ||
| ) | ||
| @pytest.mark.parametrize("idt", _integer_dtypes) | ||
| def test_searchsorted_strided_int(idt): | ||
| q = get_queue_or_skip() | ||
| skip_if_dtype_not_supported(idt, q) | ||
|
|
@@ -144,12 +162,12 @@ def _add_extended_fp(array): | |
| array[-1] = dpt.nan | ||
|
|
||
|
|
||
| @pytest.mark.parametrize("idt", [dpt.float16, dpt.float32, dpt.float64]) | ||
| def test_searchsorted_contig_fp(idt): | ||
| @pytest.mark.parametrize("fdt", _floating_dtypes) | ||
| def test_searchsorted_contig_fp(fdt): | ||
| q = get_queue_or_skip() | ||
| skip_if_dtype_not_supported(idt, q) | ||
| skip_if_dtype_not_supported(fdt, q) | ||
|
|
||
| dt = dpt.dtype(idt) | ||
| dt = dpt.dtype(fdt) | ||
|
|
||
| hay_stack = dpt.linspace(0, 1, num=255, dtype=dt, endpoint=True) | ||
| _add_extended_fp(hay_stack) | ||
|
|
@@ -165,12 +183,12 @@ def test_searchsorted_contig_fp(idt): | |
| ) | ||
|
|
||
|
|
||
| @pytest.mark.parametrize("idt", [dpt.float16, dpt.float32, dpt.float64]) | ||
| def test_searchsorted_strided_fp(idt): | ||
| @pytest.mark.parametrize("fdt", _floating_dtypes) | ||
| def test_searchsorted_strided_fp(fdt): | ||
| q = get_queue_or_skip() | ||
| skip_if_dtype_not_supported(idt, q) | ||
| skip_if_dtype_not_supported(fdt, q) | ||
|
|
||
| dt = dpt.dtype(idt) | ||
| dt = dpt.dtype(fdt) | ||
|
|
||
| hay_stack = dpt.repeat( | ||
| dpt.linspace(0, 1, num=255, dtype=dt, endpoint=True), 4 | ||
|
|
@@ -213,12 +231,12 @@ def _add_extended_cfp(array): | |
| return dpt.sort(dpt.concat((ev, array))) | ||
|
|
||
|
|
||
| @pytest.mark.parametrize("idt", [dpt.complex64, dpt.complex128]) | ||
| def test_searchsorted_contig_cfp(idt): | ||
| @pytest.mark.parametrize("cdt", _complex_dtypes) | ||
| def test_searchsorted_contig_cfp(cdt): | ||
| q = get_queue_or_skip() | ||
| skip_if_dtype_not_supported(idt, q) | ||
| skip_if_dtype_not_supported(cdt, q) | ||
|
|
||
| dt = dpt.dtype(idt) | ||
| dt = dpt.dtype(cdt) | ||
|
|
||
| hay_stack = dpt.linspace(0, 1, num=255, dtype=dt, endpoint=True) | ||
| hay_stack = _add_extended_cfp(hay_stack) | ||
|
|
@@ -233,12 +251,12 @@ def test_searchsorted_contig_cfp(idt): | |
| ) | ||
|
|
||
|
|
||
| @pytest.mark.parametrize("idt", [dpt.complex64, dpt.complex128]) | ||
| def test_searchsorted_strided_cfp(idt): | ||
| @pytest.mark.parametrize("cdt", _complex_dtypes) | ||
| def test_searchsorted_strided_cfp(cdt): | ||
| q = get_queue_or_skip() | ||
| skip_if_dtype_not_supported(idt, q) | ||
| skip_if_dtype_not_supported(cdt, q) | ||
|
|
||
| dt = dpt.dtype(idt) | ||
| dt = dpt.dtype(cdt) | ||
|
|
||
| hay_stack = dpt.repeat( | ||
| dpt.linspace(0, 1, num=255, dtype=dt, endpoint=True), 4 | ||
|
|
@@ -285,7 +303,7 @@ def test_searchsorted_validation(): | |
| x1 = dpt.arange(10, dtype="i4") | ||
| except dpctl.SyclDeviceCreationError: | ||
| pytest.skip("Default device could not be created") | ||
| with pytest.raises(TypeError): | ||
| with pytest.raises(ValueError): | ||
| dpt.searchsorted(x1, None) | ||
| with pytest.raises(TypeError): | ||
| dpt.searchsorted(x1, x1, sorter=dict()) | ||
|
|
@@ -375,3 +393,23 @@ def test_searchsorted_strided_scalar_needle(): | |
| needles = dpt.asarray(needles_np) | ||
|
|
||
| _check(hay_stack, needles, needles_np) | ||
|
|
||
|
|
||
| @pytest.mark.parametrize("dt", _all_dtypes) | ||
| def test_searchsorted_py_scalars(dt): | ||
| q = get_queue_or_skip() | ||
| skip_if_dtype_not_supported(dt, q) | ||
|
|
||
| x = dpt.zeros(10, dtype=dt, sycl_queue=q) | ||
| py_zeros = ( | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Would it make sense to parametrize |
||
| bool(0), | ||
| int(0), | ||
| float(0), | ||
| complex(0), | ||
| np.float32(0), | ||
| ctypes.c_int(0), | ||
| ) | ||
| for sc in py_zeros: | ||
| r1 = dpt.searchsorted(x, sc) | ||
| assert isinstance(r1, dpt.usm_ndarray) | ||
| assert r1.shape == () | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.