@@ -756,7 +756,6 @@ def histogram_bin_edges(a, bins=10, range=None, weights=None):
756756
757757
758758def histogram2d (x , y , bins = 10 , range = None , density = None , weights = None ):
759- # pylint: disable=line-too-long
760759 """
761760 Compute the bi-dimensional histogram of two data samples.
762761
@@ -768,9 +767,8 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
768767 y : {dpnp.ndarray, usm_ndarray} of shape (N,)
769768 An array containing the `y` coordinates of the points to be
770769 histogrammed.
771- bins : {int, list of dpnp.ndarray or usm_ndarray, sequence of scalars}, \
772- optional
773- Histogram bins.
770+ bins : {int, dpnp.ndarray, usm_ndarray, [int, int], [array, array], \
771+ [int, array], [array, int]}, optional
774772
775773 The bins specification:
776774
@@ -784,30 +782,38 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
784782 * A combination [int, array] or [array, int], where int
785783 is the number of bins and array is the bin edges.
786784
787- range : {dpnp.ndarray, usm_ndarray} of shape (2,2), optional
785+ Default: ``None``
786+ range : {None, dpnp.ndarray, usm_ndarray} of shape (2,2), optional
788787 The leftmost and rightmost edges of the bins along each dimension
789788 (if not specified explicitly in the `bins` parameters):
790789 ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
791790 will be considered outliers and not tallied in the histogram.
791+
792+ Default: ``None``
792793 density : {None, bool}, optional
793- If ``False``, the default, returns the number of samples in each bin.
794+ If ``False`` or ``None``, the default, returns the number of
795+ samples in each bin.
794796 If ``True``, returns the probability *density* function at the bin,
795- ``bin_count / sample_count / bin_area``.
796- weights : {dpnp.ndarray, usm_ndarray} of shape (N,), optional
797+ ``bin_count / sample_count / bin_volume``.
798+
799+ Default: ``None``
800+ weights : {None, dpnp.ndarray, usm_ndarray} of shape (N,), optional
797801 An array of values ``w_i`` weighing each sample ``(x_i, y_i)``.
798- Weights are normalized to ``1`` if `density` is ``True``. If `density` is
799- ``False``, the values of the returned histogram are equal to the sum of
800- the weights belonging to the samples falling into each bin.
802+ Weights are normalized to ``1`` if `density` is ``True``.
803+ If `density` is ``False``, the values of the returned histogram
804+ are equal to the sum of the weights belonging to the samples
805+ falling into each bin.
801806
807+ Default: ``None``
802808 Returns
803809 -------
804810 H : dpnp.ndarray of shape (nx, ny)
805811 The bi-dimensional histogram of samples `x` and `y`. Values in `x`
806812 are histogrammed along the first dimension and values in `y` are
807813 histogrammed along the second dimension.
808- xedges : dpnp.ndarray, shape(nx+1,)
814+ xedges : dpnp.ndarray of shape (nx+1,)
809815 The bin edges along the first dimension.
810- yedges : dpnp.ndarray, shape(ny+1,)
816+ yedges : dpnp.ndarray of shape (ny+1,)
811817 The bin edges along the second dimension.
812818
813819 See Also
@@ -843,7 +849,6 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
843849 >>> edges_y
844850 [-1.1889046 -0.07263839 1.0436279 2.159894 ]
845851 """
846- # pylint: enable=line-too-long
847852
848853 dpnp .check_supported_arrays_type (x , y )
849854 if weights is not None :
@@ -1066,7 +1071,7 @@ def _histdd_extract_arrays(sample, weights, bins):
10661071 return all_arrays
10671072
10681073
1069- def histogramdd (sample , bins = 10 , range = None , density = False , weights = None ):
1074+ def histogramdd (sample , bins = 10 , range = None , density = None , weights = None ):
10701075 """
10711076 Compute the multidimensional histogram of some data.
10721077
@@ -1093,6 +1098,13 @@ def histogramdd(sample, bins=10, range=None, density=False, weights=None):
10931098 values being used for the corresponding dimension.
10941099 None is equivalent to passing a tuple of D None values.
10951100
1101+ Default: ``None``
1102+ density : {None, bool}, optional
1103+ If ``False`` or ``None``, the default, returns the number of
1104+ samples in each bin.
1105+ If ``True``, returns the probability *density* function at the bin,
1106+ ``bin_count / sample_count / bin_volume``.
1107+
10961108 Default: ``None``
10971109 weights : {dpnp.ndarray, usm_ndarray}, optional
10981110 An (N,)-shaped array of values `w_i` weighing each sample
@@ -1102,12 +1114,6 @@ def histogramdd(sample, bins=10, range=None, density=False, weights=None):
11021114 weights belonging to the samples falling into each bin.
11031115
11041116 Default: ``None``
1105- density : bool, optional
1106- If ``False``, the default, returns the number of samples in each bin.
1107- If ``True``, returns the probability *density* function at the bin,
1108- ``bin_count / sample_count / bin_volume``.
1109-
1110- Default: ``False``
11111117
11121118 Returns
11131119 -------
0 commit comments