Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 54 additions & 11 deletions dpnp/dpnp_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -1252,12 +1252,48 @@ def searchsorted(self, v, side="left", sorter=None):
@property
def shape(self):
"""
Lengths of axes. A tuple of numbers represents size of each dimension.
Tuple of array dimensions.

Setter of this property involves reshaping without copy. If the array
cannot be reshaped without copy, it raises an exception.
The shape property is usually used to get the current shape of an array,
but may also be used to reshape the array in-place by assigning a tuple
of array dimensions to it. Unlike :obj:`dpnp.reshape`, only non-negative
values are supported to be set as new shape. Reshaping an array in-place
will fail if a copy is required.

.. seealso: :attr:`numpy.ndarray.shape`
For full documentation refer to :obj:`numpy.ndarray.shape`.

Note
----
Using :obj:`dpnp.ndarray.reshape` or :obj:`dpnp.reshape is the
preferred approach to set new shape of an array.

See Also
--------
:obj:`dpnp.shape` : Equivalent getter function.
:obj:`dpnp.reshape` : Function similar to setting `shape`.
:obj:`dpnp.ndarray.reshape` : Method similar to setting `shape`.

Examples
--------
>>> import dpnp as np
>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)

>>> y.shape = (3, 8)
>>> y
array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
>>> y.shape = (3, 6)
...
TypeError: Can not reshape array of size 24 into (3, 6)

"""

Expand All @@ -1268,16 +1304,23 @@ def shape(self, newshape):
"""
Set new lengths of axes.

A tuple of numbers represents size of each dimension.
It involves reshaping without copy. If the array cannot be reshaped without copy,
it raises an exception.
Modifies array instamcee in-place by changing its metadata about the
shape and the strides of the array, or raises `AttributeError`
exception if in-place change is not possible.

.. seealso: :attr:`numpy.ndarray.shape`
Whether the array can be reshape in-place depends on its strides. Use
:obj:`dpnp.reshape` function which always succeeds to reshape the array
by performing a copy if necessary.

"""
For full documentation refer to :obj:`numpy.ndarray.shape`.

if not isinstance(newshape, (list, tuple)):
newshape = (newshape,)
Parameters
----------
newshape : {tuple, int}
New shape. Only non-negative values are supported. The new shape
may not lead to the change in the number of elements in the array.

"""

self._array_obj.shape = newshape

Expand Down
143 changes: 143 additions & 0 deletions dpnp/dpnp_iface_mathematical.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,7 @@
"mod",
"modf",
"multiply",
"nan_to_num",
"negative",
"nextafter",
"positive",
Expand All @@ -130,6 +131,13 @@
]


def _get_max_min(dtype):
"""Get the maximum and minimum representable values for an inexact dtype."""

f = dpnp.finfo(dtype)
return f.max, f.min


def _get_reduction_res_dt(a, dtype, _out):
"""Get a data type used by dpctl for result array in reduction function."""

Expand Down Expand Up @@ -2353,6 +2361,141 @@ def modf(x1, **kwargs):
)


def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None):
"""
Replace ``NaN`` with zero and infinity with large finite numbers (default
behaviour) or with the numbers defined by the user using the `nan`,
`posinf` and/or `neginf` keywords.

If `x` is inexact, ``NaN`` is replaced by zero or by the user defined value
in `nan` keyword, infinity is replaced by the largest finite floating point
values representable by ``x.dtype`` or by the user defined value in
`posinf` keyword and -infinity is replaced by the most negative finite
floating point values representable by ``x.dtype`` or by the user defined
value in `neginf` keyword.

For complex dtypes, the above is applied to each of the real and
imaginary components of `x` separately.

If `x` is not inexact, then no replacements are made.

For full documentation refer to :obj:`numpy.nan_to_num`.

Parameters
----------
x : {dpnp.ndarray, usm_ndarray}
Input data.
copy : bool, optional
Whether to create a copy of `x` (``True``) or to replace values
in-place (``False``). The in-place operation only occurs if casting to
an array does not require a copy.
nan : {int, float, bool}, optional
Value to be used to fill ``NaN`` values.
Default: ``0.0``.
posinf : {int, float, bool, None}, optional
Value to be used to fill positive infinity values. If no value is
passed then positive infinity values will be replaced with a very
large number.
Default: ``None``.
neginf : {int, float, bool, None} optional
Value to be used to fill negative infinity values. If no value is
passed then negative infinity values will be replaced with a very
small (or negative) number.
Default: ``None``.

Returns
-------
out : dpnp.ndarray
`x`, with the non-finite values replaced. If `copy` is ``False``, this
may be `x` itself.

See Also
--------
:obj:`dpnp.isinf` : Shows which elements are positive or negative infinity.
:obj:`dpnp.isneginf` : Shows which elements are negative infinity.
:obj:`dpnp.isposinf` : Shows which elements are positive infinity.
:obj:`dpnp.isnan` : Shows which elements are Not a Number (NaN).
:obj:`dpnp.isfinite` : Shows which elements are finite
(not NaN, not infinity)

Examples
--------
>>> import dpnp as np
>>> np.nan_to_num(np.array(np.inf))
array(1.79769313e+308)
>>> np.nan_to_num(np.array(-np.inf))
array(-1.79769313e+308)
>>> np.nan_to_num(np.array(np.nan))
array(0.)
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000,
-1.28000000e+002, 1.28000000e+002])
>>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333)
array([ 3.3333333e+07, 3.3333333e+07, -9.9990000e+03, -1.2800000e+02,
1.2800000e+02])
>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)])
>>> np.nan_to_num(y)
array([1.79769313e+308 +0.00000000e+000j, # may vary
0.00000000e+000 +0.00000000e+000j,
0.00000000e+000 +1.79769313e+308j])
>>> np.nan_to_num(y, nan=111111, posinf=222222)
array([222222.+111111.j, 111111. +0.j, 111111.+222222.j])

"""

dpnp.check_supported_arrays_type(x)

# Python boolean is a subtype of an integer
# so additional check for bool is not needed.
if not isinstance(nan, (int, float)):
raise TypeError(
"nan must be a scalar of an integer, float, bool, "
f"but got {type(nan)}"
)

out = dpnp.empty_like(x) if copy else x
x_type = x.dtype.type

if not issubclass(x_type, dpnp.inexact):
return x

parts = (
(x.real, x.imag) if issubclass(x_type, dpnp.complexfloating) else (x,)
)
parts_out = (
(out.real, out.imag)
if issubclass(x_type, dpnp.complexfloating)
else (out,)
)
max_f, min_f = _get_max_min(x.real.dtype)
if posinf is not None:
if not isinstance(posinf, (int, float)):
raise TypeError(
"posinf must be a scalar of an integer, float, bool, "
f"or be None, but got {type(posinf)}"
)
max_f = posinf
if neginf is not None:
if not isinstance(neginf, (int, float)):
raise TypeError(
"neginf must be a scalar of an integer, float, bool, "
f"or be None, but got {type(neginf)}"
)
min_f = neginf

for part, part_out in zip(parts, parts_out):
nan_mask = dpnp.isnan(part)
posinf_mask = dpnp.isposinf(part)
neginf_mask = dpnp.isneginf(part)

part = dpnp.where(nan_mask, nan, part, out=part_out)
part = dpnp.where(posinf_mask, max_f, part, out=part_out)
part = dpnp.where(neginf_mask, min_f, part, out=part_out)

return out


_NEGATIVE_DOCSTRING = """
Computes the numerical negative for each element `x_i` of input array `x`.

Expand Down
2 changes: 0 additions & 2 deletions dpnp/dpnp_iface_nanfunctions.py
Original file line number Diff line number Diff line change
Expand Up @@ -551,7 +551,6 @@ def nanmean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
raise TypeError("If input is inexact, then out must be inexact.")

cnt_dtype = a.real.dtype if dtype is None else dtype
# pylint: disable=invalid-unary-operand-type
cnt = dpnp.sum(
~mask, axis=axis, dtype=cnt_dtype, keepdims=keepdims, where=where
)
Expand Down Expand Up @@ -1062,7 +1061,6 @@ def nanvar(

# Compute mean
var_dtype = a.real.dtype if dtype is None else dtype
# pylint: disable=invalid-unary-operand-type
cnt = dpnp.sum(
~mask, axis=axis, dtype=var_dtype, keepdims=True, where=where
)
Expand Down
16 changes: 0 additions & 16 deletions tests/skipped_tests.tbl
Original file line number Diff line number Diff line change
Expand Up @@ -206,22 +206,6 @@ tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_par
tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_param_2_{shapes=[(3, 2), (3, 4)]}::test_invalid_broadcast
tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_param_3_{shapes=[(0,), (2,)]}::test_invalid_broadcast

tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_negative
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_for_old_numpy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_negative_for_old_numpy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_nan_arg
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf_arg
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[nan]
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[posinf]
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[neginf]

tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_scalar_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_copy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inplace
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_real_dtypes
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_with_tol_real_dtypes
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_true
Expand Down
16 changes: 0 additions & 16 deletions tests/skipped_tests_gpu.tbl
Original file line number Diff line number Diff line change
Expand Up @@ -260,22 +260,6 @@ tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_par
tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_param_2_{shapes=[(3, 2), (3, 4)]}::test_invalid_broadcast
tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_param_3_{shapes=[(0,), (2,)]}::test_invalid_broadcast

tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_negative
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_for_old_numpy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_negative_for_old_numpy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_nan_arg
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf_arg
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[nan]
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[posinf]
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[neginf]

tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_scalar_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_copy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inplace
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_real_dtypes
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_with_tol_real_dtypes
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_true
Expand Down
60 changes: 60 additions & 0 deletions tests/test_mathematical.py
Original file line number Diff line number Diff line change
Expand Up @@ -1116,6 +1116,66 @@ def test_subtract(self, dtype, lhs, rhs):
self._test_mathematical("subtract", dtype, lhs, rhs, check_type=False)


class TestNanToNum:
@pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True))
@pytest.mark.parametrize("shape", [(3,), (2, 3), (3, 2, 2)])
def test_nan_to_num(self, dtype, shape):
a = numpy.random.randn(*shape).astype(dtype)
if not dpnp.issubdtype(dtype, dpnp.integer):
a.flat[1] = numpy.nan
a_dp = dpnp.array(a)

result = dpnp.nan_to_num(a_dp)
expected = numpy.nan_to_num(a)
assert_allclose(result, expected)

@pytest.mark.parametrize(
"data", [[], [numpy.nan], [numpy.inf], [-numpy.inf]]
)
@pytest.mark.parametrize("dtype", get_float_complex_dtypes())
def test_empty_and_single_value_arrays(self, data, dtype):
a = numpy.array(data, dtype)
ia = dpnp.array(a)

result = dpnp.nan_to_num(ia)
expected = numpy.nan_to_num(a)
assert_allclose(result, expected)

def test_boolean_array(self):
a = numpy.array([True, False, numpy.nan], dtype=bool)
ia = dpnp.array(a)

result = dpnp.nan_to_num(ia)
expected = numpy.nan_to_num(a)
assert_allclose(result, expected)

def test_errors(self):
ia = dpnp.array([0, 1, dpnp.nan, dpnp.inf, -dpnp.inf])

# unsupported type `a`
a_np = dpnp.asnumpy(ia)
assert_raises(TypeError, dpnp.nan_to_num, a_np)

# unsupported type `nan`
i_nan = dpnp.array(1)
assert_raises(TypeError, dpnp.nan_to_num, ia, nan=i_nan)

# unsupported type `posinf`
i_posinf = dpnp.array(1)
assert_raises(TypeError, dpnp.nan_to_num, ia, posinf=i_posinf)

# unsupported type `neginf`
i_neginf = dpnp.array(1)
assert_raises(TypeError, dpnp.nan_to_num, ia, neginf=i_neginf)

@pytest.mark.parametrize("kwarg", ["nan", "posinf", "neginf"])
@pytest.mark.parametrize("value", [1 - 0j, [1, 2], (1,)])
def test_errors_diff_types(self, kwarg, value):
ia = dpnp.array([0, 1, dpnp.nan, dpnp.inf, -dpnp.inf])
with pytest.raises(TypeError):
dpnp.nan_to_num(ia, **{kwarg: value})


class TestNextafter:
@pytest.mark.parametrize("dt", get_float_dtypes())
@pytest.mark.parametrize(
Expand Down
14 changes: 14 additions & 0 deletions tests/test_sycl_queue.py
Original file line number Diff line number Diff line change
Expand Up @@ -2336,3 +2336,17 @@ def test_astype(device_x, device_y):
sycl_queue = dpctl.SyclQueue(device_y)
y = dpnp.astype(x, dtype="f4", device=sycl_queue)
assert_sycl_queue_equal(y.sycl_queue, sycl_queue)


@pytest.mark.parametrize("copy", [True, False], ids=["True", "False"])
@pytest.mark.parametrize(
"device",
valid_devices,
ids=[device.filter_string for device in valid_devices],
)
def test_nan_to_num(copy, device):
a = dpnp.array([-dpnp.nan, -1, 0, 1, dpnp.nan], device=device)
result = dpnp.nan_to_num(a, copy=copy)

assert_sycl_queue_equal(result.sycl_queue, a.sycl_queue)
assert copy == (result is not a)
Loading
Loading