Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 5 additions & 10 deletions dpnp/dpnp_iface_manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -3894,18 +3894,13 @@ def transpose(a, axes=None):

"""

if isinstance(a, dpnp_array):
array = a
elif isinstance(a, dpt.usm_ndarray):
array = dpnp_array._create_from_usm_ndarray(a)
else:
raise TypeError(
f"An array must be any of supported type, but got {type(a)}"
)
dpnp.check_supported_arrays_type(a)
if isinstance(a, dpt.usm_ndarray):
a = dpnp_array._create_from_usm_ndarray(a)

if axes is None:
return array.transpose()
return array.transpose(*axes)
return a.transpose()
return a.transpose(*axes)


permute_dims = transpose # permute_dims is an alias for transpose
Expand Down
348 changes: 174 additions & 174 deletions dpnp/tests/test_arraymanipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,38 @@
from .third_party.cupy import testing


class TestAsfarray:
@testing.with_requires("numpy<2.0")
@pytest.mark.parametrize("dtype", get_all_dtypes())
@pytest.mark.parametrize(
"data", [[1, 2, 3], [1.0, 2.0, 3.0]], ids=["[1, 2, 3]", "[1., 2., 3.]"]
)
def test_asfarray1(self, dtype, data):
expected = numpy.asfarray(data, dtype)
result = dpnp.asfarray(data, dtype)
assert_array_equal(result, expected)

@testing.with_requires("numpy<2.0")
@pytest.mark.usefixtures("suppress_complex_warning")
@pytest.mark.parametrize("dtype", get_all_dtypes())
@pytest.mark.parametrize("data", [[1.0, 2.0, 3.0]], ids=["[1., 2., 3.]"])
@pytest.mark.parametrize("data_dtype", get_all_dtypes(no_none=True))
def test_asfarray2(self, dtype, data, data_dtype):
expected = numpy.asfarray(numpy.array(data, dtype=data_dtype), dtype)
result = dpnp.asfarray(dpnp.array(data, dtype=data_dtype), dtype)
assert_array_equal(result, expected)

# This is only for coverage with NumPy 2.0 and above
def test_asfarray_coverage(self):
expected = dpnp.array([1.0, 2.0, 3.0])
result = dpnp.asfarray([1, 2, 3])
assert_array_equal(result, expected)

expected = dpnp.array([1.0, 2.0, 3.0], dtype=dpnp.float32)
result = dpnp.asfarray([1, 2, 3], dtype=dpnp.float32)
assert_array_equal(result, expected)


class TestAtleast1d:
def test_0D_array(self):
a = dpnp.array(1)
Expand Down Expand Up @@ -132,6 +164,148 @@ def test_dpnp_dpt_array(self):
assert_array_equal(res, desired)


class TestBroadcastArray:
def assert_broadcast_correct(self, input_shapes):
np_arrays = [numpy.zeros(s, dtype="i1") for s in input_shapes]
out_np_arrays = numpy.broadcast_arrays(*np_arrays)
dpnp_arrays = [dpnp.asarray(Xnp) for Xnp in np_arrays]
out_dpnp_arrays = dpnp.broadcast_arrays(*dpnp_arrays)
for Xnp, X in zip(out_np_arrays, out_dpnp_arrays):
assert_array_equal(
Xnp, dpnp.asnumpy(X), err_msg=f"Failed for {input_shapes})"
)

def assert_broadcast_arrays_raise(self, input_shapes):
dpnp_arrays = [dpnp.asarray(numpy.zeros(s)) for s in input_shapes]
pytest.raises(ValueError, dpnp.broadcast_arrays, *dpnp_arrays)

def test_broadcast_arrays_same(self):
Xnp = numpy.arange(10)
Ynp = numpy.arange(10)
res_Xnp, res_Ynp = numpy.broadcast_arrays(Xnp, Ynp)
X = dpnp.asarray(Xnp)
Y = dpnp.asarray(Ynp)
res_X, res_Y = dpnp.broadcast_arrays(X, Y)
assert_array_equal(res_Xnp, dpnp.asnumpy(res_X))
assert_array_equal(res_Ynp, dpnp.asnumpy(res_Y))

def test_broadcast_arrays_one_off(self):
Xnp = numpy.array([[1, 2, 3]])
Ynp = numpy.array([[1], [2], [3]])
res_Xnp, res_Ynp = numpy.broadcast_arrays(Xnp, Ynp)
X = dpnp.asarray(Xnp)
Y = dpnp.asarray(Ynp)
res_X, res_Y = dpnp.broadcast_arrays(X, Y)
assert_array_equal(res_Xnp, dpnp.asnumpy(res_X))
assert_array_equal(res_Ynp, dpnp.asnumpy(res_Y))

@pytest.mark.parametrize(
"shapes",
[
(),
(1,),
(3,),
(0, 1),
(0, 3),
(1, 0),
(3, 0),
(1, 3),
(3, 1),
(3, 3),
],
)
def test_broadcast_arrays_same_shapes(self, shapes):
for shape in shapes:
single_input_shapes = [shape]
self.assert_broadcast_correct(single_input_shapes)
double_input_shapes = [shape, shape]
self.assert_broadcast_correct(double_input_shapes)
triple_input_shapes = [shape, shape, shape]
self.assert_broadcast_correct(triple_input_shapes)

@pytest.mark.parametrize(
"shapes",
[
[[(1,), (3,)]],
[[(1, 3), (3, 3)]],
[[(3, 1), (3, 3)]],
[[(1, 3), (3, 1)]],
[[(1, 1), (3, 3)]],
[[(1, 1), (1, 3)]],
[[(1, 1), (3, 1)]],
[[(1, 0), (0, 0)]],
[[(0, 1), (0, 0)]],
[[(1, 0), (0, 1)]],
[[(1, 1), (0, 0)]],
[[(1, 1), (1, 0)]],
[[(1, 1), (0, 1)]],
],
)
def test_broadcast_arrays_same_len_shapes(self, shapes):
# Check that two different input shapes of the same length, but some have
# ones, broadcast to the correct shape.
for input_shapes in shapes:
self.assert_broadcast_correct(input_shapes)
self.assert_broadcast_correct(input_shapes[::-1])

@pytest.mark.parametrize(
"shapes",
[
[[(), (3,)]],
[[(3,), (3, 3)]],
[[(3,), (3, 1)]],
[[(1,), (3, 3)]],
[[(), (3, 3)]],
[[(1, 1), (3,)]],
[[(1,), (3, 1)]],
[[(1,), (1, 3)]],
[[(), (1, 3)]],
[[(), (3, 1)]],
[[(), (0,)]],
[[(0,), (0, 0)]],
[[(0,), (0, 1)]],
[[(1,), (0, 0)]],
[[(), (0, 0)]],
[[(1, 1), (0,)]],
[[(1,), (0, 1)]],
[[(1,), (1, 0)]],
[[(), (1, 0)]],
[[(), (0, 1)]],
],
)
def test_broadcast_arrays_different_len_shapes(self, shapes):
# Check that two different input shapes (of different lengths) broadcast
# to the correct shape.
for input_shapes in shapes:
self.assert_broadcast_correct(input_shapes)
self.assert_broadcast_correct(input_shapes[::-1])

@pytest.mark.parametrize(
"shapes",
[
[[(3,), (4,)]],
[[(2, 3), (2,)]],
[[(3,), (3,), (4,)]],
[[(1, 3, 4), (2, 3, 3)]],
],
)
def test_incompatible_shapes_raise_valueerror(self, shapes):
for input_shapes in shapes:
self.assert_broadcast_arrays_raise(input_shapes)
self.assert_broadcast_arrays_raise(input_shapes[::-1])

def test_broadcast_arrays_empty_input(self):
assert dpnp.broadcast_arrays() == []

def test_subok_error(self):
x = dpnp.ones((4))
with pytest.raises(NotImplementedError):
dpnp.broadcast_arrays(x, subok=True)

with pytest.raises(NotImplementedError):
dpnp.broadcast_to(x, (4, 4), subok=True)


class TestColumnStack:
def test_non_iterable(self):
with pytest.raises(TypeError):
Expand Down Expand Up @@ -987,180 +1161,6 @@ def test_generator(self):
dpnp.vstack(map(lambda x: x, dpnp.ones((3, 2))))


@testing.with_requires("numpy<2.0")
@pytest.mark.parametrize("dtype", get_all_dtypes())
@pytest.mark.parametrize(
"data", [[1, 2, 3], [1.0, 2.0, 3.0]], ids=["[1, 2, 3]", "[1., 2., 3.]"]
)
def test_asfarray(dtype, data):
expected = numpy.asfarray(data, dtype)
result = dpnp.asfarray(data, dtype)

assert_array_equal(result, expected)


@testing.with_requires("numpy<2.0")
@pytest.mark.usefixtures("suppress_complex_warning")
@pytest.mark.parametrize("dtype", get_all_dtypes())
@pytest.mark.parametrize("data", [[1.0, 2.0, 3.0]], ids=["[1., 2., 3.]"])
@pytest.mark.parametrize("data_dtype", get_all_dtypes(no_none=True))
def test_asfarray2(dtype, data, data_dtype):
expected = numpy.asfarray(numpy.array(data, dtype=data_dtype), dtype)
result = dpnp.asfarray(dpnp.array(data, dtype=data_dtype), dtype)

assert_array_equal(result, expected)


def assert_broadcast_correct(input_shapes):
np_arrays = [numpy.zeros(s, dtype="i1") for s in input_shapes]
out_np_arrays = numpy.broadcast_arrays(*np_arrays)
dpnp_arrays = [dpnp.asarray(Xnp) for Xnp in np_arrays]
out_dpnp_arrays = dpnp.broadcast_arrays(*dpnp_arrays)
for Xnp, X in zip(out_np_arrays, out_dpnp_arrays):
assert_array_equal(
Xnp, dpnp.asnumpy(X), err_msg=f"Failed for {input_shapes})"
)


def assert_broadcast_arrays_raise(input_shapes):
dpnp_arrays = [dpnp.asarray(numpy.zeros(s)) for s in input_shapes]
pytest.raises(ValueError, dpnp.broadcast_arrays, *dpnp_arrays)


def test_broadcast_arrays_same():
Xnp = numpy.arange(10)
Ynp = numpy.arange(10)
res_Xnp, res_Ynp = numpy.broadcast_arrays(Xnp, Ynp)
X = dpnp.asarray(Xnp)
Y = dpnp.asarray(Ynp)
res_X, res_Y = dpnp.broadcast_arrays(X, Y)
assert_array_equal(res_Xnp, dpnp.asnumpy(res_X))
assert_array_equal(res_Ynp, dpnp.asnumpy(res_Y))


def test_broadcast_arrays_one_off():
Xnp = numpy.array([[1, 2, 3]])
Ynp = numpy.array([[1], [2], [3]])
res_Xnp, res_Ynp = numpy.broadcast_arrays(Xnp, Ynp)
X = dpnp.asarray(Xnp)
Y = dpnp.asarray(Ynp)
res_X, res_Y = dpnp.broadcast_arrays(X, Y)
assert_array_equal(res_Xnp, dpnp.asnumpy(res_X))
assert_array_equal(res_Ynp, dpnp.asnumpy(res_Y))


@pytest.mark.parametrize(
"shapes",
[
(),
(1,),
(3,),
(0, 1),
(0, 3),
(1, 0),
(3, 0),
(1, 3),
(3, 1),
(3, 3),
],
)
def test_broadcast_arrays_same_shapes(shapes):
for shape in shapes:
single_input_shapes = [shape]
assert_broadcast_correct(single_input_shapes)
double_input_shapes = [shape, shape]
assert_broadcast_correct(double_input_shapes)
triple_input_shapes = [shape, shape, shape]
assert_broadcast_correct(triple_input_shapes)


@pytest.mark.parametrize(
"shapes",
[
[[(1,), (3,)]],
[[(1, 3), (3, 3)]],
[[(3, 1), (3, 3)]],
[[(1, 3), (3, 1)]],
[[(1, 1), (3, 3)]],
[[(1, 1), (1, 3)]],
[[(1, 1), (3, 1)]],
[[(1, 0), (0, 0)]],
[[(0, 1), (0, 0)]],
[[(1, 0), (0, 1)]],
[[(1, 1), (0, 0)]],
[[(1, 1), (1, 0)]],
[[(1, 1), (0, 1)]],
],
)
def test_broadcast_arrays_same_len_shapes(shapes):
# Check that two different input shapes of the same length, but some have
# ones, broadcast to the correct shape.

for input_shapes in shapes:
assert_broadcast_correct(input_shapes)
assert_broadcast_correct(input_shapes[::-1])


@pytest.mark.parametrize(
"shapes",
[
[[(), (3,)]],
[[(3,), (3, 3)]],
[[(3,), (3, 1)]],
[[(1,), (3, 3)]],
[[(), (3, 3)]],
[[(1, 1), (3,)]],
[[(1,), (3, 1)]],
[[(1,), (1, 3)]],
[[(), (1, 3)]],
[[(), (3, 1)]],
[[(), (0,)]],
[[(0,), (0, 0)]],
[[(0,), (0, 1)]],
[[(1,), (0, 0)]],
[[(), (0, 0)]],
[[(1, 1), (0,)]],
[[(1,), (0, 1)]],
[[(1,), (1, 0)]],
[[(), (1, 0)]],
[[(), (0, 1)]],
],
)
def test_broadcast_arrays_different_len_shapes(shapes):
# Check that two different input shapes (of different lengths) broadcast
# to the correct shape.

for input_shapes in shapes:
assert_broadcast_correct(input_shapes)
assert_broadcast_correct(input_shapes[::-1])


@pytest.mark.parametrize(
"shapes",
[
[[(3,), (4,)]],
[[(2, 3), (2,)]],
[[(3,), (3,), (4,)]],
[[(1, 3, 4), (2, 3, 3)]],
],
)
def test_incompatible_shapes_raise_valueerror(shapes):
for input_shapes in shapes:
assert_broadcast_arrays_raise(input_shapes)
assert_broadcast_arrays_raise(input_shapes[::-1])


def test_broadcast_arrays_empty_input():
assert dpnp.broadcast_arrays() == []


def test_subok_error():
x = dpnp.ones((4))
with pytest.raises(NotImplementedError):
dpnp.broadcast_arrays(x, subok=True)
dpnp.broadcast_to(x, (4, 4), subok=True)


def test_can_cast():
X = dpnp.ones((2, 2), dtype=dpnp.int64)
pytest.raises(TypeError, dpnp.can_cast, X, 1)
Expand Down
Loading
Loading