Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 16 additions & 2 deletions dpnp/linalg/dpnp_utils_linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -397,7 +397,14 @@ def _batched_qr(a, mode="reduced"):
batch_size,
depends=[copy_ev],
)
_manager.add_event_pair(ht_ev, geqrf_ev)

# w/a to avoid raice conditional on CUDA during multiple runs
# TODO: Remove it ones the OneMath issue is resolved
# https://github.com/uxlfoundation/oneMath/issues/626
if dpnp.is_cuda_backend(a_sycl_queue):
ht_ev.wait()
else:
_manager.add_event_pair(ht_ev, geqrf_ev)

if mode in ["r", "raw"]:
if mode == "r":
Expand Down Expand Up @@ -2468,7 +2475,14 @@ def dpnp_qr(a, mode="reduced"):
ht_ev, geqrf_ev = li._geqrf(
a_sycl_queue, a_t.get_array(), tau_h.get_array(), depends=[copy_ev]
)
_manager.add_event_pair(ht_ev, geqrf_ev)

# w/a to avoid raice conditional on CUDA during multiple runs
# TODO: Remove it ones the OneMath issue is resolved
# https://github.com/uxlfoundation/oneMath/issues/626
if dpnp.is_cuda_backend(a_sycl_queue):
ht_ev.wait()
else:
_manager.add_event_pair(ht_ev, geqrf_ev)

if mode in ["r", "raw"]:
if mode == "r":
Expand Down
54 changes: 36 additions & 18 deletions dpnp/tests/test_linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -2380,12 +2380,6 @@ class TestQr:
)
@pytest.mark.parametrize("mode", ["r", "raw", "complete", "reduced"])
def test_qr(self, dtype, shape, mode):
if (
is_cuda_device()
and mode in ["complete", "reduced"]
and shape in [(16, 16), (2, 2, 4)]
):
pytest.skip("SAT-7589")
a = generate_random_numpy_array(shape, dtype, seed_value=81)
ia = dpnp.array(a)

Expand All @@ -2398,24 +2392,48 @@ def test_qr(self, dtype, shape, mode):

# check decomposition
if mode in ("complete", "reduced"):
if a.ndim == 2:
assert_almost_equal(
dpnp.dot(dpnp_q, dpnp_r),
a,
decimal=5,
)
else: # a.ndim > 2
assert_almost_equal(
dpnp.matmul(dpnp_q, dpnp_r),
a,
decimal=5,
)
assert_almost_equal(
dpnp.matmul(dpnp_q, dpnp_r),
a,
decimal=5,
)
else: # mode=="raw"
assert_dtype_allclose(dpnp_q, np_q)

if mode in ("raw", "r"):
assert_dtype_allclose(dpnp_r, np_r)

@pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True))
@pytest.mark.parametrize(
"shape",
[(32, 32), (8, 16, 16)],
ids=[
"(32, 32)",
"(8, 16, 16)",
],
)
@pytest.mark.parametrize("mode", ["r", "raw", "complete", "reduced"])
def test_qr_large(self, dtype, shape, mode):
a = generate_random_numpy_array(shape, dtype, seed_value=81)
ia = dpnp.array(a)
if mode == "r":
np_r = numpy.linalg.qr(a, mode)
dpnp_r = dpnp.linalg.qr(ia, mode)
else:
np_q, np_r = numpy.linalg.qr(a, mode)
dpnp_q, dpnp_r = dpnp.linalg.qr(ia, mode)
# check decomposition
if mode in ("complete", "reduced"):
assert_almost_equal(
dpnp.matmul(dpnp_q, dpnp_r),
a,
decimal=5,
)
else: # mode=="raw"
assert_dtype_allclose(dpnp_q, np_q, factor=12)
if mode in ("raw", "r"):
assert_dtype_allclose(dpnp_r, np_r, factor=12)

@pytest.mark.parametrize("dtype", get_all_dtypes(no_bool=True))
@pytest.mark.parametrize(
"shape",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -163,14 +163,7 @@ def test_decomposition(self, dtype):
class TestQRDecomposition(unittest.TestCase):

@testing.for_dtypes("fdFD")
# skip cases with 'complete' and 'reduce' modes on CUDA (SAT-7611)
def check_mode(self, array, mode, dtype):
if (
is_cuda_device()
and array.size > 0
and mode in ["complete", "reduced"]
):
return
a_cpu = numpy.asarray(array, dtype=dtype)
a_gpu = cupy.asarray(array, dtype=dtype)
result_gpu = cupy.linalg.qr(a_gpu, mode=mode)
Expand Down
Loading