-
Notifications
You must be signed in to change notification settings - Fork 23
Implement dpnp.linalg.lu_solve()
batch inputs
#2619
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from 12 commits
36d21df
4270823
14feed3
5e21a02
a13cd88
b68d80b
f6d77fe
eb8c58a
7464a25
959f5f8
e760aa2
38689a3
240f97e
01078bf
6b3f331
83a8c85
4208454
cddc321
8b7aecb
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,348 @@ | ||||||
//***************************************************************************** | ||||||
// Copyright (c) 2025, Intel Corporation | ||||||
// All rights reserved. | ||||||
// | ||||||
// Redistribution and use in source and binary forms, with or without | ||||||
// modification, are permitted provided that the following conditions are met: | ||||||
// - Redistributions of source code must retain the above copyright notice, | ||||||
// this list of conditions and the following disclaimer. | ||||||
// - Redistributions in binary form must reproduce the above copyright notice, | ||||||
// this list of conditions and the following disclaimer in the documentation | ||||||
// and/or other materials provided with the distribution. | ||||||
// | ||||||
vlad-perevezentsev marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||||||
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||||||
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | ||||||
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||||||
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||||||
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | ||||||
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||||||
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF | ||||||
// THE POSSIBILITY OF SUCH DAMAGE. | ||||||
//***************************************************************************** | ||||||
|
||||||
#include <cstddef> | ||||||
#include <stdexcept> | ||||||
#include <vector> | ||||||
|
||||||
#include <pybind11/pybind11.h> | ||||||
#include <sycl/sycl.hpp> | ||||||
|
||||||
// dpctl tensor headers | ||||||
#include "utils/memory_overlap.hpp" | ||||||
#include "utils/sycl_alloc_utils.hpp" | ||||||
#include "utils/type_dispatch.hpp" | ||||||
#include "utils/type_utils.hpp" | ||||||
|
||||||
#include "getrs.hpp" | ||||||
#include "linalg_exceptions.hpp" | ||||||
#include "types_matrix.hpp" | ||||||
|
||||||
namespace dpnp::extensions::lapack | ||||||
{ | ||||||
namespace mkl_lapack = oneapi::mkl::lapack; | ||||||
namespace py = pybind11; | ||||||
namespace type_utils = dpctl::tensor::type_utils; | ||||||
namespace td_ns = dpctl::tensor::type_dispatch; | ||||||
vlad-perevezentsev marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||
|
||||||
typedef sycl::event (*getrs_batch_impl_fn_ptr_t)( | ||||||
sycl::queue &, | ||||||
oneapi::mkl::transpose, // trans | ||||||
const std::int64_t, // n | ||||||
const std::int64_t, // nrhs | ||||||
char *, // a | ||||||
std::int64_t, // lda | ||||||
std::int64_t, // stride_a | ||||||
std::int64_t *, // ipiv | ||||||
std::int64_t, // stride_ipiv | ||||||
char *, // b | ||||||
std::int64_t, // ldb | ||||||
std::int64_t, // stride_b | ||||||
std::int64_t, // batch_size | ||||||
std::vector<sycl::event> &, | ||||||
const std::vector<sycl::event> &); | ||||||
|
||||||
static getrs_batch_impl_fn_ptr_t getrs_batch_dispatch_vector[td_ns::num_types]; | ||||||
|
||||||
template <typename T> | ||||||
static sycl::event getrs_batch_impl(sycl::queue &exec_q, | ||||||
oneapi::mkl::transpose trans, | ||||||
const std::int64_t n, | ||||||
const std::int64_t nrhs, | ||||||
char *in_a, | ||||||
std::int64_t lda, | ||||||
std::int64_t stride_a, | ||||||
std::int64_t *ipiv, | ||||||
std::int64_t stride_ipiv, | ||||||
char *in_b, | ||||||
std::int64_t ldb, | ||||||
std::int64_t stride_b, | ||||||
std::int64_t batch_size, | ||||||
vlad-perevezentsev marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||
std::vector<sycl::event> &host_task_events, | ||||||
const std::vector<sycl::event> &depends) | ||||||
{ | ||||||
type_utils::validate_type_for_device<T>(exec_q); | ||||||
|
||||||
T *a = reinterpret_cast<T *>(in_a); | ||||||
T *b = reinterpret_cast<T *>(in_b); | ||||||
|
||||||
const std::int64_t scratchpad_size = | ||||||
mkl_lapack::getrs_batch_scratchpad_size<T>(exec_q, trans, n, nrhs, lda, | ||||||
stride_a, stride_ipiv, ldb, | ||||||
stride_b, batch_size); | ||||||
T *scratchpad = nullptr; | ||||||
|
||||||
std::stringstream error_msg; | ||||||
std::int64_t info = 0; | ||||||
bool is_exception_caught = false; | ||||||
|
||||||
sycl::event getrs_batch_event; | ||||||
try { | ||||||
scratchpad = sycl::malloc_device<T>(scratchpad_size, exec_q); | ||||||
|
||||||
getrs_batch_event = mkl_lapack::getrs_batch( | ||||||
exec_q, | ||||||
trans, // Specifies the operation: whether or not to transpose | ||||||
// matrix A. Can be 'N' for no transpose, 'T' for transpose, | ||||||
// and 'C' for conjugate transpose. | ||||||
n, // The order of the square matrix A | ||||||
// and the number of rows in matrix B (0 ≤ n). | ||||||
// It must be a non-negative integer. | ||||||
nrhs, // The number of right-hand sides, | ||||||
// i.e., the number of columns in matrix B (0 ≤ nrhs). | ||||||
a, // Pointer to the square matrix A (n x n). | ||||||
lda, // The leading dimension of matrix A, must be at least max(1, | ||||||
// n). It must be at least max(1, n). | ||||||
stride_a, // Stride between consecutive A matrices in the batch. | ||||||
ipiv, // Pointer to the output array of pivot indices that were used | ||||||
// during factorization (n, ). | ||||||
stride_ipiv, // Stride between consecutive pivot arrays in the | ||||||
// batch. | ||||||
b, // Pointer to the matrix B of right-hand sides (ldb, nrhs). | ||||||
ldb, // The leading dimension of matrix B, must be at least max(1, | ||||||
// n). | ||||||
stride_b, // Stride between consecutive B matrices in the batch. | ||||||
batch_size, // Total number of matrices in the batch. | ||||||
scratchpad, // Pointer to scratchpad memory to be used by MKL | ||||||
// routine for storing intermediate results. | ||||||
scratchpad_size, depends); | ||||||
} catch (mkl_lapack::batch_error const &be) { | ||||||
// Get the indices of matrices within the batch that encountered an | ||||||
// error | ||||||
auto error_matrices_ids = be.ids(); | ||||||
|
||||||
// OneMKL batched functions throw a single `batch_error` | ||||||
// instead of per-matrix exceptions or an info array. | ||||||
// This is interpreted as a computation_error (singular matrix), | ||||||
// consistent with non-batched LAPACK behavior. | ||||||
is_exception_caught = false; | ||||||
if (scratchpad != nullptr) { | ||||||
dpctl::tensor::alloc_utils::sycl_free_noexcept(scratchpad, exec_q); | ||||||
} | ||||||
throw LinAlgError("The solve could not be completed."); | ||||||
} catch (mkl_lapack::exception const &e) { | ||||||
is_exception_caught = true; | ||||||
info = e.info(); | ||||||
|
||||||
if (info < 0) { | ||||||
error_msg << "Parameter number " << -info | ||||||
<< " had an illegal value."; | ||||||
} | ||||||
else if (info == scratchpad_size && e.detail() != 0) { | ||||||
error_msg | ||||||
<< "Insufficient scratchpad size. Required size is at least " | ||||||
<< e.detail(); | ||||||
} | ||||||
else if (info > 0) { | ||||||
is_exception_caught = false; | ||||||
if (scratchpad != nullptr) { | ||||||
dpctl::tensor::alloc_utils::sycl_free_noexcept(scratchpad, | ||||||
exec_q); | ||||||
} | ||||||
throw LinAlgError("The solve could not be completed."); | ||||||
} | ||||||
else { | ||||||
error_msg << "Unexpected MKL exception caught during getrs() " | ||||||
"call:\nreason: " | ||||||
<< e.what() << "\ninfo: " << e.info(); | ||||||
} | ||||||
} catch (sycl::exception const &e) { | ||||||
is_exception_caught = true; | ||||||
error_msg << "Unexpected SYCL exception caught during getrs() call:\n" | ||||||
<< e.what(); | ||||||
} | ||||||
|
||||||
if (is_exception_caught) // an unexpected error occurs | ||||||
{ | ||||||
if (scratchpad != nullptr) { | ||||||
dpctl::tensor::alloc_utils::sycl_free_noexcept(scratchpad, exec_q); | ||||||
} | ||||||
|
||||||
throw std::runtime_error(error_msg.str()); | ||||||
} | ||||||
|
||||||
sycl::event clean_up_event = exec_q.submit([&](sycl::handler &cgh) { | ||||||
cgh.depends_on(getrs_batch_event); | ||||||
auto ctx = exec_q.get_context(); | ||||||
cgh.host_task([ctx, scratchpad]() { | ||||||
dpctl::tensor::alloc_utils::sycl_free_noexcept(scratchpad, ctx); | ||||||
}); | ||||||
}); | ||||||
host_task_events.push_back(clean_up_event); | ||||||
return getrs_batch_event; | ||||||
} | ||||||
|
||||||
std::pair<sycl::event, sycl::event> | ||||||
getrs_batch(sycl::queue &exec_q, | ||||||
const dpctl::tensor::usm_ndarray &a_array, | ||||||
const dpctl::tensor::usm_ndarray &ipiv_array, | ||||||
const dpctl::tensor::usm_ndarray &b_array, | ||||||
oneapi::mkl::transpose trans, | ||||||
std::int64_t n, | ||||||
std::int64_t nrhs, | ||||||
std::int64_t stride_a, | ||||||
std::int64_t stride_ipiv, | ||||||
std::int64_t stride_b, | ||||||
std::int64_t batch_size, | ||||||
const std::vector<sycl::event> &depends) | ||||||
{ | ||||||
const int a_array_nd = a_array.get_ndim(); | ||||||
const int b_array_nd = b_array.get_ndim(); | ||||||
const int ipiv_array_nd = ipiv_array.get_ndim(); | ||||||
|
||||||
if (a_array_nd < 3) { | ||||||
throw py::value_error( | ||||||
"The LU-factorized array has ndim=" + std::to_string(a_array_nd) + | ||||||
", but an array with ndim >= 3 is expected"); | ||||||
} | ||||||
if (b_array_nd < 2) { | ||||||
throw py::value_error("The right-hand sides array has ndim=" + | ||||||
std::to_string(b_array_nd) + | ||||||
", but an array with ndim >= 2 is expected"); | ||||||
} | ||||||
if (ipiv_array_nd < 1) { | ||||||
throw py::value_error("The array of pivot indices has ndim=" + | ||||||
std::to_string(ipiv_array_nd) + | ||||||
", but an array with ndim >= 2 is expected"); | ||||||
vlad-perevezentsev marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
} | ||||||
|
||||||
const py::ssize_t *a_array_shape = a_array.get_shape_raw(); | ||||||
if (a_array_shape[0] != a_array_shape[1]) { | ||||||
throw py::value_error("Expected batch of square matrices , but got " | ||||||
"matrix shape (" + | ||||||
std::to_string(a_array_shape[0]) + ", " + | ||||||
std::to_string(a_array_shape[1]) + ") in batch"); | ||||||
} | ||||||
|
||||||
if (ipiv_array_nd != a_array_nd - 1) { | ||||||
throw py::value_error( | ||||||
"The array of pivot indices has ndim=" + | ||||||
std::to_string(ipiv_array_nd) + | ||||||
", but an array with ndim=" + std::to_string(a_array_nd - 1) + | ||||||
" is expected to match LU batch dimensions"); | ||||||
} | ||||||
|
||||||
// check compatibility of execution queue and allocation queue | ||||||
if (!dpctl::utils::queues_are_compatible(exec_q, | ||||||
{a_array, b_array, ipiv_array})) | ||||||
{ | ||||||
throw py::value_error( | ||||||
"Execution queue is not compatible with allocation queues"); | ||||||
} | ||||||
|
||||||
auto const &overlap = dpctl::tensor::overlap::MemoryOverlap(); | ||||||
if (overlap(a_array, b_array)) { | ||||||
throw py::value_error("The LU-factorized and right-hand sides arrays " | ||||||
"are overlapping segments of memory"); | ||||||
} | ||||||
|
||||||
bool is_a_array_c_contig = a_array.is_c_contiguous(); | ||||||
bool is_a_array_f_contig = a_array.is_f_contiguous(); | ||||||
bool is_b_array_f_contig = b_array.is_f_contiguous(); | ||||||
bool is_ipiv_array_c_contig = ipiv_array.is_c_contiguous(); | ||||||
bool is_ipiv_array_f_contig = ipiv_array.is_f_contiguous(); | ||||||
if (!is_a_array_c_contig && !is_a_array_f_contig) { | ||||||
throw py::value_error("The LU-factorized array " | ||||||
"must be either C-contiguous " | ||||||
"or F-contiguous"); | ||||||
} | ||||||
if (!is_b_array_f_contig) { | ||||||
throw py::value_error("The right-hand sides array " | ||||||
"must be F-contiguous"); | ||||||
} | ||||||
if (!is_ipiv_array_c_contig && !is_ipiv_array_f_contig) { | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If it must be both C- and F-contiguous
Suggested change
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We should only get an error if the array is neither C-contig or F-contig There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. But in getrs implementation used There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. no, in getrs: if (!is_ipiv_array_c_contig || !is_ipiv_array_f_contig) {
throw py::value_error("The array of pivot indices "
"must be contiguous");
} There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. My bad |
||||||
throw py::value_error("The array of pivot indices " | ||||||
"must be contiguous"); | ||||||
} | ||||||
|
||||||
auto array_types = td_ns::usm_ndarray_types(); | ||||||
int a_array_type_id = | ||||||
array_types.typenum_to_lookup_id(a_array.get_typenum()); | ||||||
int b_array_type_id = | ||||||
array_types.typenum_to_lookup_id(b_array.get_typenum()); | ||||||
|
||||||
if (a_array_type_id != b_array_type_id) { | ||||||
throw py::value_error("The types of the LU-factorized and " | ||||||
"right-hand sides arrays are mismatched"); | ||||||
} | ||||||
|
||||||
getrs_batch_impl_fn_ptr_t getrs_batch_fn = | ||||||
getrs_batch_dispatch_vector[a_array_type_id]; | ||||||
if (getrs_batch_fn == nullptr) { | ||||||
throw py::value_error( | ||||||
"No getrs_batch implementation defined for the provided type " | ||||||
"of the input matrix"); | ||||||
} | ||||||
|
||||||
auto ipiv_types = td_ns::usm_ndarray_types(); | ||||||
int ipiv_array_type_id = | ||||||
ipiv_types.typenum_to_lookup_id(ipiv_array.get_typenum()); | ||||||
|
||||||
if (ipiv_array_type_id != static_cast<int>(td_ns::typenum_t::INT64)) { | ||||||
throw py::value_error("The type of 'ipiv_array' must be int64"); | ||||||
} | ||||||
|
||||||
const std::int64_t lda = std::max<size_t>(1UL, n); | ||||||
const std::int64_t ldb = std::max<size_t>(1UL, n); | ||||||
|
||||||
char *a_array_data = a_array.get_data(); | ||||||
char *b_array_data = b_array.get_data(); | ||||||
char *ipiv_array_data = ipiv_array.get_data(); | ||||||
|
||||||
std::int64_t *ipiv = reinterpret_cast<std::int64_t *>(ipiv_array_data); | ||||||
|
||||||
std::vector<sycl::event> host_task_events; | ||||||
sycl::event getrs_batch_ev = getrs_batch_fn( | ||||||
exec_q, trans, n, nrhs, a_array_data, lda, stride_a, ipiv, stride_ipiv, | ||||||
b_array_data, ldb, stride_b, batch_size, host_task_events, depends); | ||||||
|
||||||
sycl::event args_ev = dpctl::utils::keep_args_alive( | ||||||
exec_q, {a_array, b_array, ipiv_array}, host_task_events); | ||||||
|
||||||
return std::make_pair(args_ev, getrs_batch_ev); | ||||||
} | ||||||
|
||||||
template <typename fnT, typename T> | ||||||
struct GetrsBatchContigFactory | ||||||
{ | ||||||
fnT get() | ||||||
{ | ||||||
if constexpr (types::GetrsBatchTypePairSupportFactory<T>::is_defined) { | ||||||
return getrs_batch_impl<T>; | ||||||
} | ||||||
else { | ||||||
return nullptr; | ||||||
} | ||||||
} | ||||||
}; | ||||||
|
||||||
void init_getrs_batch_dispatch_vector(void) | ||||||
{ | ||||||
td_ns::DispatchVectorBuilder<getrs_batch_impl_fn_ptr_t, | ||||||
GetrsBatchContigFactory, td_ns::num_types> | ||||||
contig; | ||||||
contig.populate_dispatch_vector(getrs_batch_dispatch_vector); | ||||||
vlad-perevezentsev marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||
} | ||||||
} // namespace dpnp::extensions::lapack |
Uh oh!
There was an error while loading. Please reload this page.