Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ Please refer to [Technical Report](https://arxiv.org/pdf/2309.15112.pdf) for mor


## Demo
[![Replicate](https://replicate.com/cjwbw/internlm-xcomposer/badge)](https://replicate.com/cjwbw/internlm-xcomposer)


https://github.com/InternLM/InternLM-XComposer/assets/22662425/fdb89a38-c650-45f2-b5b7-51182e89a5cc
Expand Down
23 changes: 23 additions & 0 deletions cog.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Configuration for Cog ⚙️
# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md

build:
gpu: true
python_version: "3.9"
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
- "ninja-build"
python_packages:
- "xlsxwriter==3.1.2"
- "sentencepiece==0.1.99"
- "transformers==4.33.3"
- "torch==2.0.1"
- "pillow==10.0.1"
- "torchvision==0.15.2"
- ipython
- "timm==0.4.12"
- "einops==0.6.1"
run:
- git clone https://github.com/Dao-AILab/flash-attention.git && cd flash-attention && python setup.py install && cd csrc/rotary && pip install -e .
predict: "predict.py:Predictor"
35 changes: 35 additions & 0 deletions predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md


import torch
from transformers import AutoModel, AutoTokenizer
from cog import BasePredictor, Input, Path


class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
torch.set_grad_enabled(False)
self.model = (
AutoModel.from_pretrained(
"internlm/internlm-xcomposer-7b",
cache_dir="model_cache",
trust_remote_code=True,
)
.cuda()
.eval()
)
tokenizer = AutoTokenizer.from_pretrained(
"internlm/internlm-xcomposer-7b", trust_remote_code=True
)
self.model.tokenizer = tokenizer

def predict(
self,
image: Path = Input(description="Input image.", default=None),
text: str = Input(description="Input text."),
) -> str:
"""Run a single prediction on the model"""
output = self.model.generate(text, str(image) if image else None)
return output