🌍 TL;DR: State-of-the-art multilingual encoder models trained on 3T tokens across 1833 languages with novel annealed language learning. Outperforms XLM-R and can even beat OpenAI's o3 and Google's Gemini 2.5 Pro.
📄 Paper | 🤗 Model Collection | 📊 Training Data
mmBERT introduces the first modern multilingual encoder trained with cascading annealed language learning (ALL), progressively incorporating 1833 languages during training. With novel inverse masking schedules and high-quality multilingual data, mmBERT significantly outperforms previous multilingual encoders while achieving remarkable efficiency improvements (up to 4x faster).
pip install torch>=1.9.0
pip install transformers>=4.48.0
Small Model for Fast Inference:
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/mmbert-small")
model = AutoModel.from_pretrained("jhu-clsp/mmbert-small")
# Example: Get multilingual embeddings
inputs = tokenizer("Hello world! 你好世界! Bonjour le monde!", return_tensors="pt")
outputs = model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
Base Model for Classification:
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/mmbert-base")
model = AutoModelForMaskedLM.from_pretrained("jhu-clsp/mmbert-base")
# Example: Multilingual masked language modeling
text = "The capital of [MASK] is Paris."
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Get predictions for [MASK] tokens
mask_indices = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)
predictions = outputs.logits[mask_indices]
top_tokens = torch.topk(predictions, 5, dim=-1)
predicted_words = [tokenizer.decode(token) for token in top_tokens.indices[0]]
print(f"Predictions: {predicted_words}")
Size | Model | Parameters | Languages | Context | Best For | Download |
---|---|---|---|---|---|---|
Small | mmbert-small | 140M | 1833 | 8192 | Fast inference, edge deployment | |
Base | mmbert-base | 307M | 1833 | 8192 | Best performance, production use |
- 1833 Languages: Covers more languages than any previous multilingual encoder
- Extended Context: Up to 8192 tokens (vs 512 for XLM-R)
- Efficiency: 2-4x faster inference than previous multilingual models
- Modern Architecture: Based on ModernBERT with RoPE, GLU activations, and Flash Attention 2
- Open Training: Complete training data, recipes, and checkpoints available
The complete multilingual training dataset spans 3T tokens:
- Pre-training Data: 2.0T tokens across 60 languages
- Mid-training Data: 600B tokens across 110 languages
- Decay Phase Data: 100B tokens across 1833 languages
- Data Sources: FineWeb2, DCLM, Dolmino, Wikipedia, ArXiv, and curated multilingual corpora
Classification Task
from transformers import AutoTokenizer, AutoModel
import torch.nn as nn
# Load model for classification
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/mmbert-base")
encoder = AutoModel.from_pretrained("jhu-clsp/mmbert-base")
# Add classification head
class MultilingualClassifier(nn.Module):
def __init__(self, encoder, num_classes):
super().__init__()
self.encoder = encoder
self.classifier = nn.Linear(encoder.config.hidden_size, num_classes)
self.dropout = nn.Dropout(0.1)
def forward(self, input_ids, attention_mask=None):
outputs = self.encoder(input_ids, attention_mask=attention_mask)
pooled_output = outputs.last_hidden_state[:, 0] # Use [CLS] token
pooled_output = self.dropout(pooled_output)
return self.classifier(pooled_output)
# Initialize classifier
model = MultilingualClassifier(encoder, num_classes=3)
# Example multilingual inputs
texts = [
"This is a positive review.",
"Ceci est un avis négatif.",
"这是一个中性评价。"
]
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
predictions = model(**inputs)
Multilingual Retrieval
from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/mmbert-base")
model = AutoModel.from_pretrained("jhu-clsp/mmbert-base")
def get_embeddings(texts):
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
# Mean pooling
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings.numpy()
# Multilingual document retrieval
documents = [
"Artificial intelligence is transforming healthcare.",
"L'intelligence artificielle transforme les soins de santé.",
"人工智能正在改变医疗保健。",
"Climate change requires immediate action.",
"El cambio climático requiere acción inmediata."
]
query = "AI in medicine"
# Get embeddings
doc_embeddings = get_embeddings(documents)
query_embedding = get_embeddings([query])
# Compute similarities
similarities = np.dot(doc_embeddings, query_embedding.T).flatten()
ranked_docs = np.argsort(similarities)[::-1]
print("Most similar documents:")
for i, doc_idx in enumerate(ranked_docs[:3]):
print(f"{i+1}. {documents[doc_idx]} (score: {similarities[doc_idx]:.3f})")
Long Context Processing
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/mmbert-base")
model = AutoModel.from_pretrained("jhu-clsp/mmbert-base")
# Process long multilingual document (up to 8192 tokens)
long_text = """
This is a very long multilingual document...
Ceci est un très long document multilingue...
这是一个非常长的多语言文档...
""" * 100 # Simulate long text
# Tokenize with extended context
inputs = tokenizer(
long_text,
return_tensors="pt",
max_length=8192,
truncation=True
)
# Process efficiently with Flash Attention
with torch.no_grad():
outputs = model(**inputs)
print(f"Processed {inputs['input_ids'].shape[1]} tokens")
print(f"Output shape: {outputs.last_hidden_state.shape}")
Using 8xH100s, training took approximately 10 days for mmBERT-small and 40 days for mmBERT-base.
mmBERT introduces novel training techniques:
- Inverse Masking Schedule: Start with 30% masking, gradually reduce to 5%
- Language Progression: 60 → 110 → 1833 languages across training phases
- Temperature Annealing: 0.7 → 0.5 → 0.3 for increasingly uniform language sampling
- High-Quality Data: Progressive upgrade from web crawl to filtered premium sources
Component | Small | Base |
---|---|---|
Layers | 22 | 22 |
Hidden Size | 384 | 768 |
Intermediate Size | 1152 | 1152 |
Attention Heads | 6 | 12 |
Parameters (Total) | 140M | 307M |
Parameters (Non-Embed) | 42M | 110M |
Max Sequence Length | 8192 | 8192 |
Vocabulary Size | 256,000 | 256,000 |
Data Mixture:
- Pre-training (2.0T tokens): Web crawl, code, scientific papers, reference materials
- Mid-training (600B tokens): Higher quality filtered data with context extension
- Decay phase (100B tokens): Premium sources including textbooks and curated content
Architecture Features:
- ModernBERT-based transformer with RoPE positional embeddings
- GLU activations and prenorm layer normalization
- Flash Attention 2 for efficient long-context processing
- Gemma 2 tokenizer for multilingual coverage
Training Phases:
- Base Pre-training: 60 languages, 30% masking, learning rate warmup
- Context Extension: 110 languages, 15% masking, extended context to 8K
- Decay Phase: 1833 languages, 5% masking, high-quality data focus
Evaluation code for retrieval tasks is the same as Ettin.
Evaluation code for efficiency is taken from the ModernBERT repo.
Evaluation code for NLU tasks is based on the mGTE codebase and our fork will be uploaded soon. Please raise an issue or message us if this would be helpful for you.
Q: How does mmBERT compare to XLM-R? A: mmBERT significantly outperforms XLM-R across all benchmarks:
- +2.4 points average on XTREME
- +3.0 points on GLUE
- 16x more languages (1833 vs 100)
- 16x longer context (8K vs 512 tokens)
- 2-4x faster inference
Q: Which languages does mmBERT support? A: mmBERT supports 1833 languages and scripts from FineWeb2, including:
- All major world languages (English, Chinese, Spanish, etc.)
- European languages (including low-resource ones like Faroese)
- African languages (Swahili, Amharic, etc.)
- Asian languages (Hindi, Bengali, Thai, etc.)
- Many low-resource and indigenous languages
Q: How does the annealed language learning work? A: We progressively add languages in three phases:
- Start with 60 high-resource languages (pre-training)
- Add 50 mid-resource languages (mid-training)
- Add 1723 low-resource languages (decay phase)
This allows efficient learning without overfitting on low-resource data.
Q: Can I fine-tune mmBERT for my specific task? A: Yes! mmBERT works as a drop-in replacement for XLM-R:
from transformers import AutoModel, AutoTokenizer
# Load for fine-tuning
model = AutoModel.from_pretrained("jhu-clsp/mmbert-base")
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/mmbert-base")
# Add task-specific head and fine-tune normally
Q: What about efficiency and memory requirements? A: mmBERT is significantly more efficient:
- 2-4x faster inference than XLM-R
- Flash Attention 2 reduces memory usage for long sequences
- Support for variable-length batching
- Optimized for both CPU and GPU deployment
Q: How do I access the training data and checkpoints? A: All data and checkpoints are publicly available:
- Training data: jhu-clsp/mmbert-pretraining-data
- Checkpoints: jhu-clsp/mmbert-checkpoints
- Github code: GitHub repository
- Data processing code: Same as Ettin models
- Structured prediction tasks (NER, POS) show slightly lower scores due to tokenizer prefix space handling
- Very low-resource languages still have limited training data
- High-quality educational content filtering could benefit from more languages
If you use mmBERT models in your research, please cite our work:
@misc{marone2025mmbertmodernmultilingualencoder,
title={mmBERT: A Modern Multilingual Encoder with Annealed Language Learning},
author={Marc Marone and Orion Weller and William Fleshman and Eugene Yang and Dawn Lawrie and Benjamin Van Durme},
year={2025},
eprint={2509.06888},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.06888},
}