JOEL (Just-Objects-Events Language) is a polymodal programming language that can be compiled or interpreted based on a simple file header. Write once, run anywhere β from systems programming to AI, blockchain to UI.
Quick Install (Recommended)
curl -fsSL https://joel.val-x.com/api/install | bashManual Install
# Clone the repository
git clone https://github.com/JJ-Dynamite/JOEL.git
cd JOEL
# Build and install
cargo build --release
sudo cp target/release/joel /usr/local/bin/joel
sudo chmod +x /usr/local/bin/joelLocal Install (No sudo)
cargo build --release
export PATH="$PATH:$(pwd)/target/release"See INSTALL.md for detailed instructions.
joel version
# Should output: JOEL Language v0.1.0joel run examples/hello.joelCreate a file hello.joel:
[Interpreted]
fn greet(name: str) -> str {
return "Hello " + name
}
fn main() {
print(greet("JOEL"))
print("2 + 3 =", 2 + 3)
}
main()
Run it:
joel run hello.joel- β Lexer - Tokenizes JOEL source code
- β Parser - Parses tokens into an AST
- β
VM/Interpreter - Executes
[Interpreted]mode - β
Header Detection - Supports
[Compiled]and[Interpreted]modes - β
Target Hints - Supports
[target native],[target wasm32],[target evm], etc. - β Basic Types - Numbers, strings, booleans, lists, maps
- β Control Flow - if/else, while, for loops
- β Functions - Function definitions and calls
- β Actors - Actor-based concurrency (syntax support)
- β Contracts - Smart contract syntax (syntax support)
- β Components - UI component syntax (syntax support)
- β Flows - Workflow syntax (syntax support)
- β Type System - Comprehensive type system with primitives, collections, and generics
- β
Static Type Checking - Full type checking for
[Compiled]mode - β Type Inference - Automatic type inference with explicit annotations
- β Ownership System - Rust-like borrow checker for memory safety
- β Error Diagnostics - Detailed error messages with source location tracking
- β LLVM Backend - Infrastructure for native code generation (LLVM IR)
- β WASM Backend - Infrastructure for WebAssembly compilation
- β Standard Library - Core modules (core, math, string, collections)
JOEL/
βββ src/ # Rust source code
β βββ main.rs # CLI entry point
β βββ lexer.rs # Tokenizer
β βββ parser.rs # Parser
β βββ ast.rs # Abstract Syntax Tree
β βββ vm.rs # Virtual Machine / Interpreter
β βββ types.rs # Type system
β βββ type_checker.rs # Static type checker
β βββ ownership.rs # Borrow checker
β βββ compiler.rs # Compilation backends (LLVM, WASM, EVM)
β βββ diagnostics.rs # Error diagnostics
β βββ stdlib.rs # Standard library modules
βββ examples/ # Example JOEL files
βββ docs/ # Nextra documentation site
β βββ pages/ # Documentation pages (MDX)
β βββ components/ # React components
β βββ styles/ # Custom styles
βββ Cargo.toml # Rust project config
βββ Dockerfile # Docker build for docs
[Compiled] # AOT/JIT compilation mode
[Interpreted] # VM interpretation mode
[target wasm32] # Optional target hint
[Interpreted]
# Variables
let x = 10
let name: str = "JOEL"
# Functions
fn add(a: i32, b: i32) -> i32 {
return a + b
}
# Control Flow
if x > 5 {
print("High")
} else {
print("Low")
}
# Loops
for i in range(0, 5) {
print(i)
}
# Actors
actor Counter {
state let n: i64 = 0
fn inc() {
self.n += 1
}
}
# Contracts
[Compiled]
[target evm]
contract Vault {
state let balance: uint256 = 0
fn deposit() {
balance += tx.value
}
}
# Run in interpreted mode
joel run <file.joel>
# Build for a target
joel build <file.joel> --target native
joel build <file.joel> --target wasm32
joel build <file.joel> --target evm
# Build with optimizations
joel build <file.joel> --target native --optimize
# Build with debug symbols
joel build <file.joel> --target native --debug
# Build for specific architecture
joel build <file.joel> --target native --arch arm64
# Show version
joel versionComplete documentation is available online:
π Live Documentation: https://joel.val-x.com
The documentation is built with Nextra (the same framework used for Next.js documentation) and features:
- β¨ Beautiful UI matching Next.js docs
- π Built-in search functionality
- π Dark mode support
- π± Mobile responsive
- β‘ Fast page loads
- π Markdown/MDX support
- π¨ Syntax highlighting
To run the documentation locally:
# Navigate to docs directory
cd docs
# Install dependencies
npm install
# Start development server
npm run devThen open http://localhost:3000 in your browser.
The examples/ directory contains several example files:
hello.joel- Basic syntax and functionsarithmetic.joel- Math operationscontrol_flow.joel- Control structuresactor.joel- Actor-based concurrencycontract.joel- Smart contract exampleui_component.joel- UI component exampleflow.joel- Workflow exampledeployment.joel- Container deploymentbuild_native.joel- Native compilation examplebuild_wasm.joel- WebAssembly compilation examplebuild_evm.joel- EVM smart contract examplebuild_ios.joel- iOS framework examplebuild_android.joel- Android library examplebuild_cosmos.joel- Cosmos SDK contract example
Run any example:
joel run examples/hello.joelBuild examples:
# Build for native
joel build examples/build_native.joel --target native
# Build for WASM with debug
joel build examples/build_wasm.joel --target wasm32 --debug
# Build smart contract
joel build examples/build_evm.joel --target evm
# Build for iOS
joel build examples/build_ios.joel --target ios
# Build for Android
joel build examples/build_android.joel --target android
# Build Cosmos contract
joel build examples/build_cosmos.joel --target cosmosSee TESTING.md for detailed test information.
- Lexer - Tokenizes JOEL source code
- Parser - Builds AST from tokens
- VM/Interpreter - Executes
[Interpreted]mode - Basic syntax support (variables, functions, control flow)
- Built-in functions (
print,range) - Documentation site with Nextra
- CLI tool (
joelcommand) - Example programs
- LLVM backend infrastructure for
[Compiled]mode - WASM target compilation infrastructure
- Static type checking
- Type inference improvements
- Ownership system (Rust-like borrow checker)
- Error messages and diagnostics
- Standard library core modules
- LLVM IR generation for native target
- WASM binary generation for web target
- EVM bytecode generation for Ethereum
- Solana BPF generation
- Optimization support (--optimize flag)
- Debug symbols support (--debug flag)
- Source map generation for WASM
- Cross-compilation support (x86_64, ARM64, RISC-V) Goal: Complete compilation backends for various deployment targets
- EVM bytecode generation - Basic EVM bytecode generation
- Contract ABI generation (basic)
- Gas optimization
- Event emission support
- Library linking
- Solana WASM target - Compile to Solana program format
- BPF bytecode generation (basic)
- Account management
- Program-derived addresses
- Cosmos SDK target - Smart contract compilation
- WASM contract generation
- Cosmos-specific features
- Polkadot/Substrate target - Runtime module compilation
- WASM runtime module generation
- Substrate-specific features
- LLVM IR generation - Basic LLVM IR code generation
- Optimization support (--optimize flag)
- Dead code elimination (basic)
- Constant folding
- Inlining hints
- Link-time optimization (LTO)
- Advanced inlining strategies
- WASM binary generation - Basic WebAssembly binary generation
- Source map generation for WASM (--debug flag)
- Stack trace support
- Cross-compilation support - Target different architectures
- x86_64, ARM64, RISC-V support (--arch flag)
- iOS and Android architecture support
- Cross-compilation toolchain
- Debug symbols and source maps - Enhanced debugging support
- Basic debug metadata generation
- Source map generation for WASM
- Full DWARF debug info generation
- iOS target - Compile to native iOS frameworks
- LLVM IR generation for iOS
- ARM64 iOS architecture support
- Framework packaging
- Android target - Compile to native Android libraries
- LLVM IR generation for Android
- ARM64 Android architecture support
- AAR packaging
- React Native integration - Seamless mobile development
Goal: Enable advanced programming paradigms and domain-specific features
- UI compiler (
joelui) - React/React Native output- Component to JSX/TSX transformation
- State management integration (Redux, Zustand, Jotai)
- Styling system (CSS-in-JS, Tailwind support)
- Hot module replacement
- Component tree optimization
- Virtual DOM generation
- Web Components - Native web component generation
- Custom element generation
- Shadow DOM support
- Web Component lifecycle hooks
- Desktop UI - Tauri/Electron integration
- Tauri backend integration
- Electron main process support
- Native window management
- Mobile UI - React Native integration
- Native component mapping
- Platform-specific styling
- Navigation integration
- Container ops (
joelctl) - Docker/K8s integration- Dockerfile generation from deployment blocks
- Multi-stage build support
- Kubernetes manifest generation
- Helm chart generation
- Container orchestration DSL
- Service mesh configuration (Istio, Linkerd)
- Serverless deployment - Cloud function deployment
- AWS Lambda support
- Vercel Functions
- Cloudflare Workers
- Azure Functions
- Google Cloud Functions
- CI/CD integration - Automated pipeline generation
- GitHub Actions templates
- GitLab CI templates
- Jenkins pipeline generation
- CircleCI configuration
- Build matrix support
- Actor system implementation - Full actor model runtime
- Basic actor runtime infrastructure
- Message passing framework
- Actor supervision support (supervisor field)
- Actor failure handling
- Actor reference management
- Distributed actors (network-transparent)
- Actor lifecycle management
- Actor pools and load balancing
- Async/await runtime - Native async support
- Async/await syntax support
- Async function parsing
- Future/promise implementation
- Event loop integration (Tokio-style)
- Async I/O operations
- Async streams and channels
- Cancellation tokens
- Parallel execution - Multi-threading support
- Thread pool management (
ParallelRuntime) - Data parallelism (parallel map, for, reduce)
- Lock-free data structures (LockFreeCounter)
- Work-stealing schedulers
- Parallel reduction operations
- Thread pool management (
- Pattern matching improvements - Advanced pattern matching
- Pattern matching syntax (
matchstatement) - Destructuring patterns (tuples, lists, identifiers)
- Guard clauses (conditional patterns with
if) - Pattern matching engine
- Exhaustiveness checking (basic)
- Overlap detection for patterns
- Nested pattern matching support
- Full exhaustiveness checking with type information
- Pattern guards with expressions
- Pattern matching syntax (
- Generators & Iterators - Lazy evaluation support
- Generator syntax (
yieldkeyword) - Generator expression support
- Iterator protocol implementation (
JoelIteratortrait) - Range and List iterators
- Iterator utilities (map, filter, take)
- Lazy sequence operations
- Infinite sequences
- Generator syntax (
- Coroutines - Cooperative multitasking
- Coroutine runtime (
CoroutineRuntime) - Coroutine creation and management
- Suspend/resume operations
- Coroutine cancellation
- Coroutine scheduling
- Coroutine state persistence
- Coroutine runtime (
Goal: Build a complete development ecosystem
- Package manager (
joelpkg) - Dependency management- Package registry
- Version resolution
- Lock file generation
- Workspace support
- Module system - Advanced module features
- Tree-shaking
- Dynamic imports
- Module federation
- Language Server Protocol (LSP) - IDE integration
- Auto-completion
- Go to definition
- Refactoring support
- Inline documentation
- IDE plugins - Native IDE support
- VSCode extension
- IntelliJ/CLion plugin
- Vim/Neovim support
- Debugger - Step-through debugging
- Breakpoints
- Variable inspection
- Call stack navigation
- Watch expressions
- Profiler - Performance analysis
- CPU profiling
- Memory profiling
- Flame graphs
- Performance benchmarks
- Testing framework - Built-in testing support
- Unit testing
- Integration testing
- Property-based testing
- Test coverage reports
- Linting & Formatting - Code quality tools
- Linter rules
- Auto-formatter
- Style guide enforcement
- Documentation generator - API documentation
- Markdown/HTML output
- Interactive examples
- Type documentation
- Tutorial system - Interactive learning
Goal: Native SQL query support like DuckDB - write SQL directly in JOEL
- SQL datatype - SQL is a native datatype in JOEL
[Compiled] # SQL query as a variable with type inference sql result = SELECT name, age, salary FROM employees WHERE age > 30 ORDER BY salary DESC # Explicit type annotation sql result: sql<{name: str, age: i32, salary: f64}> = SELECT name, age, salary FROM employees # SQL in function parameters and returns fn get_employees(min_age: i32) -> sql<{name: str, age: i32}> { sql result = SELECT name, age FROM employees WHERE age > min_age return result } - SQL parser and executor - Full SQL standard support
- SELECT, INSERT, UPDATE, DELETE statements
- JOIN operations (INNER, LEFT, RIGHT, FULL, CROSS)
- Subqueries and CTEs (Common Table Expressions)
- Window functions (ROW_NUMBER, RANK, PARTITION BY, OVER)
- Aggregations (SUM, COUNT, AVG, MAX, MIN, GROUP BY, HAVING)
- Set operations (UNION, INTERSECT, EXCEPT)
- Query optimization - Automatic query optimization
- Query planner with cost-based optimization
- Index selection and usage
- Join reordering and algorithms
- Predicate pushdown
- Projection pushdown
- Columnar storage - Efficient analytical queries
- Columnar data format
- Compression (RLE, Dictionary encoding, Delta encoding)
- Vectorized execution engine
- SIMD-optimized operations
- Type-safe SQL queries - Compile-time SQL validation
[Compiled] # Type inference from SQL schema sql employees: sql<{name: str, age: i32, salary: f64}> = SELECT name, age, salary FROM employees # Access results with type safety for emp in employees { print(emp.name, emp.age, emp.salary) } # Type checking for SQL operations sql joined: sql<{name: str, dept: str}> = SELECT e.name, d.name as dept FROM employees e JOIN departments d ON e.department_id = d.id - SQL schema definition - Define tables in JOEL
[Compiled] table employees { id: i64 PRIMARY KEY AUTO_INCREMENT, name: str NOT NULL, age: i32 CHECK (age >= 18), salary: f64 DEFAULT 0.0, department_id: i64 FOREIGN KEY REFERENCES departments(id), created_at: timestamp DEFAULT NOW() } # Indexes index idx_employees_age ON employees(age) index idx_employees_dept ON employees(department_id) - Parameterized queries - Safe SQL with type-checked parameters
[Compiled] fn find_users(min_age: i32, city: str) -> sql<{id: i64, name: str}> { sql results = SELECT id, name FROM users WHERE age > min_age AND city = city return results } # Or with explicit parameter binding sql query: sql<{name: str}> = SELECT name FROM users WHERE age > ? AND city = ? let results = query.bind(25, "NYC") - SQL expressions in JOEL - Mix SQL and JOEL seamlessly
[Compiled] fn calculate_stats() { sql avg_salary: sql<{avg: f64}> = SELECT AVG(salary) as avg FROM employees let avg = avg_salary.first().avg sql top_earners: sql<{name: str, salary: f64}> = SELECT name, salary FROM employees WHERE salary > avg ORDER BY salary DESC LIMIT 10 for emp in top_earners { print(emp.name, emp.salary) } }
- Embedded database - DuckDB-like in-process database
- No external server required
- Fast analytical queries
- Direct file access (CSV, Parquet, JSON, Arrow)
- In-memory and persistent modes
- Database connections - Connect to external databases
[Compiled] # Connection as a type db postgres = connect("postgresql://localhost/mydb") # Use connection in SQL sql users: sql<{id: i64, name: str}> = SELECT id, name FROM users USING postgres # Multiple database support db analytics = connect("clickhouse://analytics-server/data") sql metrics: sql<{metric: str, value: f64}> = SELECT metric, value FROM metrics USING analytics - Database drivers - Native database support
- PostgreSQL, MySQL, SQLite
- ClickHouse, TimescaleDB
- MongoDB (with SQL interface)
- Redis (with SQL-like queries)
- DuckDB (embedded analytics)
- Connection pooling - Efficient database connections
[Compiled] pool db_pool = connection_pool( url: "postgresql://localhost/mydb", min_connections: 5, max_connections: 20 ) - Transaction support - ACID transactions with SQL syntax
[Compiled] transaction { sql INSERT INTO accounts (id, balance) VALUES (1, 1000) sql INSERT INTO accounts (id, balance) VALUES (2, 500) commit } # Or with automatic rollback on error transaction { sql UPDATE accounts SET balance = balance - 100 WHERE id = 1 sql UPDATE accounts SET balance = balance + 100 WHERE id = 2 # Auto-commit on success, auto-rollback on error }
- Complex queries - Advanced SQL capabilities
[Compiled] # Recursive CTEs sql org_tree: sql<{id: i64, name: str, level: i32}> = WITH RECURSIVE org AS ( SELECT id, name, 0 as level FROM departments WHERE parent_id IS NULL UNION ALL SELECT d.id, d.name, o.level + 1 FROM departments d JOIN org o ON d.parent_id = o.id ) SELECT * FROM org # PIVOT operations sql sales_by_region: sql<{region: str, q1: f64, q2: f64, q3: f64, q4: f64}> = SELECT * FROM ( SELECT region, quarter, amount FROM sales ) PIVOT ( SUM(amount) FOR quarter IN ('Q1', 'Q2', 'Q3', 'Q4') ) # LATERAL joins sql top_products: sql<{category: str, product: str, sales: f64}> = SELECT c.name as category, p.name as product, p.sales FROM categories c CROSS JOIN LATERAL ( SELECT name, sales FROM products WHERE category_id = c.id ORDER BY sales DESC LIMIT 3 ) p - SQL views - Reusable query definitions as first-class objects
[Compiled] view high_earners: sql<{name: str, salary: f64, department: str}> = SELECT e.name, e.salary, d.name as department FROM employees e JOIN departments d ON e.department_id = d.id WHERE e.salary > 100000 # Use view like any SQL query sql top_10: sql<{name: str, salary: f64}> = SELECT name, salary FROM high_earners ORDER BY salary DESC LIMIT 10 - SQL functions - Database functions in JOEL
[Compiled] # SQL function that returns SQL result fn get_employee_stats(dept_id: i64) -> sql<{count: i64, avg_salary: f64}> { sql stats = SELECT COUNT(*) as count, AVG(salary) as avg_salary FROM employees WHERE department_id = dept_id return stats } # SQL function with SQL body sql_function calculate_bonus(salary: f64, performance: f64) -> f64 = SELECT salary * performance * 0.1 - SQL triggers - Event-driven database operations
[Compiled] trigger on_employee_update AFTER UPDATE ON employees { sql INSERT INTO audit_log (table_name, action, timestamp) VALUES ('employees', 'UPDATE', NOW()) } - SQL indexes - Automatic and manual index management
[Compiled] # Automatic index creation from queries # Manual index definition index idx_employees_name_salary ON employees(name, salary DESC) index idx_employees_dept_hash ON employees USING HASH(department_id)
- SQL result manipulation - Work with SQL results in JOEL
[Compiled] sql sales: sql<{region: str, amount: f64}> = SELECT region, amount FROM sales # Iterate over results for sale in sales { print(sale.region, sale.amount) } # Convert to list let sales_list = sales.to_list() # Filter and transform sql filtered: sql<{region: str, total: f64}> = SELECT region, SUM(amount) as total FROM sales WHERE amount > 1000 GROUP BY region # Chain SQL operations sql result = SELECT region, SUM(amount) as total FROM (SELECT * FROM sales WHERE date > '2024-01-01') GROUP BY region HAVING SUM(amount) > 10000 - Streaming SQL - Real-time query processing
[Compiled] # Continuous queries stream sensor_stream = SELECT sensor_id, value, timestamp FROM sensor_readings WHERE timestamp > NOW() - INTERVAL '1 minute' # Window functions over streams sql windowed: sql<{sensor_id: i64, avg_value: f64}> = SELECT sensor_id, AVG(value) OVER ( PARTITION BY sensor_id ORDER BY timestamp ROWS BETWEEN 9 PRECEDING AND CURRENT ROW ) as avg_value FROM sensor_stream - Data connectors - Query external data sources directly
[Compiled] # Query CSV files directly (no import needed) sql csv_data: sql<{name: str, value: f64}> = SELECT name, value FROM 'data.csv' # Query Parquet files sql parquet_data: sql<{id: i64, metric: f64}> = SELECT id, metric FROM 'analytics.parquet' WHERE date > '2024-01-01' # Query JSON files sql json_data: sql<{id: i64, name: str}> = SELECT id, name FROM 'users.json' # Query HTTP APIs as tables sql api_data: sql<{id: i64, title: str}> = SELECT id, title FROM http('https://api.example.com/posts') # Query multiple files sql combined: sql<{source: str, value: f64}> = SELECT 'csv' as source, value FROM 'data.csv' UNION ALL SELECT 'parquet' as source, value FROM 'data.parquet' - Time-series queries - Temporal data handling
[Compiled] sql hourly_avg: sql<{hour: timestamp, avg_temp: f64}> = SELECT time_bucket('1 hour', timestamp) as hour, AVG(temperature) as avg_temp FROM sensor_data WHERE timestamp > NOW() - INTERVAL '24 hours' GROUP BY hour ORDER BY hour # Time-series functions sql trends: sql<{timestamp: timestamp, value: f64, moving_avg: f64}> = SELECT timestamp, value, AVG(value) OVER ( ORDER BY timestamp ROWS BETWEEN 11 PRECEDING AND CURRENT ROW ) as moving_avg FROM time_series_data - Geospatial queries - Location-based SQL
[Compiled] sql nearby: sql<{name: str, distance: f64}> = SELECT name, ST_Distance(location, POINT(40.7128, -74.0060)) as distance FROM places WHERE ST_DWithin(location, POINT(40.7128, -74.0060), 1000) ORDER BY distance # Geospatial operations sql coverage: sql<{area: f64, population: i64}> = SELECT ST_Area(coverage_zone) as area, SUM(population) as population FROM regions WHERE ST_Intersects(coverage_zone, query_area) GROUP BY coverage_zone
- SQL CLI tool - Command-line interface for SQL operations
# Interactive SQL shell joelsql # Execute SQL file joelsql run query.joel # Connect to database joelsql connect postgresql://localhost/mydb # Query CSV/Parquet files joelsql query "SELECT * FROM 'data.csv' WHERE age > 30" # Export query results joelsql query "SELECT * FROM users" --output results.json # SQL REPL with autocomplete joelsql repl
- SQL file execution - Run SQL queries from files
# Execute SQL file joelsql run analytics.joel # Execute with parameters joelsql run query.joel --param min_age=25 --param city="NYC" # Execute multiple files joelsql run *.joel
- Database management - Database operations via CLI
# List databases joelsql databases # List tables joelsql tables # Describe table schema joelsql describe users # Show table data joelsql show users --limit 10 # Create database joelsql create-db analytics # Drop database joelsql drop-db old_db
- Query execution and results - Execute and format query results
# Execute query with formatted output joelsql query "SELECT * FROM employees" --format table # Export to different formats joelsql query "SELECT * FROM sales" --output sales.csv joelsql query "SELECT * FROM sales" --output sales.json joelsql query "SELECT * FROM sales" --output sales.parquet # Execute with timing joelsql query "SELECT * FROM large_table" --timing # Show query plan joelsql explain "SELECT * FROM employees WHERE age > 30"
- SQL script execution - Run SQL scripts with variables
# Execute script with variables joelsql script report.joel --vars year=2024 quarter=Q1 # Execute with environment variables joelsql script query.joel --env # Batch execution joelsql batch queries.joel
- Database migration - Schema versioning and migrations
# Create migration joelsql migration create add_users_table # Run migrations joelsql migration up # Rollback migration joelsql migration down # Show migration status joelsql migration status
- SQL linting and formatting - Code quality for SQL
# Lint SQL file joelsql lint query.joel # Format SQL file joelsql format query.joel # Check SQL syntax joelsql check query.joel
- Query optimization - Analyze and optimize queries
# Analyze query performance joelsql analyze "SELECT * FROM large_table WHERE id = 1" # Suggest indexes joelsql suggest-indexes query.joel # Optimize query joelsql optimize query.joel --output optimized.joel
- Data import/export - Bulk data operations
# Import CSV to table joelsql import users.csv --table users # Export table to CSV joelsql export users --output users.csv # Import from JSON joelsql import data.json --table products # Export to Parquet joelsql export sales --output sales.parquet --format parquet
- Connection management - Manage database connections
# Add connection joelsql connection add prod postgresql://prod-server/db # List connections joelsql connection list # Test connection joelsql connection test prod # Remove connection joelsql connection remove prod # Use specific connection joelsql query "SELECT * FROM users" --connection prod
- Query caching - Automatic caching of query results
[Compiled] # Automatic caching for repeated queries sql cached_result: sql<{id: i64, name: str}> = SELECT id, name FROM users CACHE FOR 5 MINUTES # Manual cache control cache.clear() cache.invalidate("users") - Materialized views - Pre-computed query results
[Compiled] materialized view daily_sales: sql<{date: date, total: f64}> = SELECT DATE(created_at) as date, SUM(amount) as total FROM sales GROUP BY DATE(created_at) # Auto-refresh materialized views REFRESH MATERIALIZED VIEW daily_sales - Query profiling - Analyze query performance
[Compiled] sql result = SELECT * FROM employees WHERE age > 30 let profile = result.profile() print("Execution time:", profile.execution_time) print("Rows scanned:", profile.rows_scanned) print("Indexes used:", profile.indexes_used) - Execution plans - EXPLAIN query plans with SQL syntax
[Compiled] sql plan: sql<{operation: str, cost: f64}> = EXPLAIN SELECT * FROM employees WHERE age > 30 # Or get plan as structured data let plan_data = explain( SELECT * FROM employees WHERE age > 30 ) print(plan_data) - Parallel query execution - Multi-threaded queries
[Compiled] # Automatic parallelization sql parallel_result = SELECT * FROM large_table PARALLEL 4 # Use 4 threads # Parallel aggregations sql aggregated = SELECT region, SUM(sales) as total FROM sales GROUP BY region PARALLEL - Query hints - Manual optimization hints
[Compiled] sql optimized = SELECT /*+ USE_INDEX(idx_age) */ * FROM employees WHERE age > 30 # Join hints sql joined = SELECT * FROM employees e /*+ USE_HASH_JOIN */ JOIN departments d ON e.dept_id = d.id - Query compilation - Compile SQL to native code
[Compiled] # JIT-compiled queries for hot paths sql compiled_query: sql<{result: f64}> = SELECT SUM(amount) as result FROM sales COMPILE # Compile to native code for repeated execution
Goal: High-level quantum computing support and abstractions
- Quantum gate operations - Basic quantum gates
- Pauli gates (X, Y, Z)
- Hadamard, CNOT, Toffoli
- Rotation gates (RX, RY, RZ)
- Phase gates (S, T, P)
- Quantum circuit DSL - High-level quantum programming
- Circuit construction API
- Measurement operations
- Quantum error correction
- Circuit visualization
- Quantum algorithm library - Common algorithms
- Grover's algorithm
- Shor's algorithm
- Quantum Fourier Transform
- Quantum phase estimation
- Variational Quantum Eigensolver (VQE)
- Qiskit integration - IBM Quantum support
- Circuit translation to Qiskit
- IBM Quantum device access
- Job submission and monitoring
- Cirq integration - Google Quantum AI
- Circuit translation to Cirq
- Google Quantum processor access
- Q# integration - Microsoft Quantum
- Circuit translation to Q#
- Azure Quantum integration
- Quantum simulators - Local quantum simulation
- State vector simulation
- Density matrix simulation
- Noise models
- GPU-accelerated simulation
- Variational algorithms - VQE, QAOA
- Parameter optimization
- Gradient computation
- Classical optimizers integration
- Quantum machine learning - QML models
- Quantum neural networks
- Quantum kernel methods
- Quantum data encoding
- Quantum optimization - Combinatorial optimization
- QAOA implementation
- Quantum approximate optimization
- Portfolio optimization
Goal: Maximize runtime performance and efficiency
- Advanced optimizations - Aggressive optimization passes
- Loop optimization (unrolling, vectorization, fusion)
- Constant folding and propagation
- Dead code elimination
- Function inlining (aggressive)
- Inter-procedural optimization
- Profile-guided optimization (PGO)
- JIT compilation - Just-in-time compilation for interpreted mode
- Hot path detection
- Adaptive optimization
- Deoptimization support
- Tiered compilation
- SIMD support - Vectorized operations
- Automatic vectorization
- SIMD intrinsics
- Vector type support
- GPU acceleration - Parallel computing
- CUDA support
- OpenCL support
- Metal support (Apple)
- Vulkan compute shaders
- Advanced GC strategies - Garbage collection improvements
- Generational GC
- Incremental GC
- Concurrent GC
- GC tuning and profiling
- Memory pools - Custom allocators
- Arena allocators
- Pool allocators
- Stack allocators
- Zero-copy operations - Efficient data handling
- Zero-copy I/O
- Memory-mapped files
- Buffer sharing
- Performance profiler (
joelperf) - Built-in profiling- CPU profiling
- Memory profiling
- I/O profiling
- Flame graphs
- Performance benchmarks
- Optimization hints - Manual optimization guidance
-
#[inline]attributes -
#[cold]attributes - Branch prediction hints
-
Goal: Enterprise-grade security features and safety guarantees
- Static analysis (
joelsec) - Security vulnerability detection- SQL injection detection
- XSS vulnerability scanning
- Buffer overflow detection
- Race condition detection
- Security audit reports
- Sandboxing - Safe code execution
- Capability-based security
- Resource limits
- Network isolation
- File system restrictions
- Capability system - Fine-grained permissions
- Capability tokens
- Permission checking
- Principle of least privilege
- Cryptographic primitives - Built-in crypto support
- Hashing (SHA-256, SHA-512, BLAKE2, BLAKE3)
- Encryption (AES-256, ChaCha20-Poly1305)
- Digital signatures (Ed25519, ECDSA)
- Key derivation (PBKDF2, Argon2)
- Random number generation (CSPRNG)
- Proof system - Mathematical correctness proofs
- Hoare logic integration
- Proof assistants (Coq, Lean)
- Automated theorem proving
- Contract verification - Smart contract formal verification
- EVM contract verification
- Solana program verification
- Property-based testing
- Type-level proofs - Dependent types
- Refinement types
- Proof-carrying code
- Type-level arithmetic
- Security scanner - Automated security analysis
- Dependency vulnerability scanning
- License compliance checking
- Secret detection
- Code signing - Authenticity verification
- Package signing
- Binary signing
- Signature verification
Goal: Seamless integration with existing ecosystems
- C FFI - Call C functions directly
- C function binding
- C struct support
- C callback support
- C library linking
- Rust FFI - Interoperate with Rust crates
- Rust crate integration
- Rust trait implementation
- Rust async runtime integration
- Python interop - Call Python from JOEL
- Python C API integration
- Python module import
- NumPy array support
- Python async support
- JavaScript interop - Browser/Node.js integration
- WebAssembly interop
- Node.js module support
- Browser API access
- JavaScript async/await
- gRPC - RPC framework support
- Protocol buffer support
- gRPC client/server
- Streaming RPC
- GraphQL - GraphQL query generation
- GraphQL schema generation
- Query builder
- Subscription support
- REST API - HTTP client/server
- HTTP client library
- REST server framework
- OpenAPI/Swagger generation
- WebSocket - Real-time communication
- WebSocket client/server
- Binary protocol support
- Message framing
- Serialization - Data format support
- JSON (native)
- MessagePack
- Protocol Buffers
- CBOR
- BSON
- Database drivers - Database connectivity
- PostgreSQL driver
- MySQL driver
- MongoDB driver
- Redis driver
Goal: Built-in distributed computing support
- Distributed actors - Network-transparent actors
- Actor location transparency
- Remote actor communication
- Actor migration
- Distributed actor supervision
- Consensus algorithms - Distributed consensus
- Raft implementation
- PBFT (Practical Byzantine Fault Tolerance)
- Paxos variant
- Leader election
- Distributed storage - Distributed data structures
- Distributed hash tables (DHT)
- CRDTs (Conflict-free Replicated Data Types)
- Distributed caching
- Replication strategies
- Service mesh - Microservices orchestration
- Service discovery
- Load balancing
- Circuit breakers
- Distributed tracing
- Decentralized storage (
dstore) - IPFS/Arweave integration- IPFS integration
- Arweave integration
- Filecoin support
- Content addressing
- Blockchain integration - Multi-chain support
- Multi-chain wallet support
- Cross-chain bridges
- Blockchain event monitoring
- P2P networking - Peer-to-peer protocols
- libp2p integration
- DHT implementation
- Peer discovery
- NAT traversal
Goal: Native machine learning capabilities
- AI/ML module (
ai) - Tensor operations- Neural network primitives
- Automatic differentiation (autograd)
- Model training pipelines
- Loss functions library
- Optimizers (SGD, Adam, RMSprop)
- Model formats - Model interoperability
- ONNX support
- TensorFlow SavedModel
- PyTorch model loading
- Model conversion tools
- GPU acceleration - ML acceleration
- CUDA for ML
- ROCm for ML
- Tensor operations on GPU
- Mixed precision training
- LLM API integration - Large language model support
- OpenAI API integration
- Anthropic Claude API
- Local LLM support (Llama, Mistral)
- Streaming responses
- Embedding support - Vector embeddings
- Text embeddings
- Image embeddings
- Vector similarity search
- Embedding databases
- Prompt engineering - DSL for prompts
- Prompt templates
- Few-shot learning
- Chain-of-thought prompting
- Agent frameworks - AI agent development
- ReAct agents
- Tool calling
- Memory management
- Multi-agent systems
Goal: Real-time data processing and event streaming
- Event streams - Event-driven architecture
- Stream processing DSL
- Event sourcing
- Event replay
- Stream backpressure handling
- Time-series processing - Real-time analytics
- Time-windowed aggregations
- Sliding window operations
- Time-series databases
- Anomaly detection
- Complex event processing - CEP engine
- Pattern matching on streams
- Temporal event patterns
- Event correlation
- Stream joins - Multi-stream operations
- Stream-to-stream joins
- Stream-to-table joins
- Windowed joins
- WebRTC support - Real-time communication
- Peer-to-peer connections
- Media streaming
- Data channels
- WebSocket server - Real-time web apps
- WebSocket server framework
- Binary protocol support
- Connection management
- Message queues - Message broker integration
- Kafka integration
- NATS integration
- RabbitMQ support
- Redis Streams
Goal: Low-level qubit manipulation and quantum circuit programming
- Qubit datatype - Native qubit type in JOEL
[Compiled] # Qubit declaration and initialization qubit q0 = |0β© qubit q1 = |1β© qubit q2 = |+β© # Superposition state # Qubit registers qubit[3] register = [|0β©, |0β©, |0β©] qubit[5] entangled_pair = create_bell_pair() - Quantum state manipulation - Direct qubit state operations
[Compiled] # Initialize qubit in specific state qubit q = |0β© # Apply quantum gates q = H(q) # Hadamard gate q = X(q) # Pauli-X (NOT gate) q = Y(q) # Pauli-Y gate q = Z(q) # Pauli-Z gate # Rotation gates q = RX(Ο/2, q) # Rotation around X-axis q = RY(Ο/4, q) # Rotation around Y-axis q = RZ(Ο/8, q) # Rotation around Z-axis # Controlled operations qubit control = |1β© qubit target = |0β© target = CNOT(control, target) # Controlled-NOT target = CZ(control, target) # Controlled-Z - Quantum gates library - Comprehensive gate operations
- Single-qubit gates (H, X, Y, Z, S, T, Phase)
- Two-qubit gates (CNOT, CZ, SWAP, iSWAP)
- Multi-qubit gates (Toffoli, Fredkin, CCX, CCZ)
- Custom unitary gates
- Parameterized gates
- Quantum circuit DSL - Build circuits with qubit-level control
[Compiled] # Define quantum circuit quantum_circuit bell_state() -> qubit[2] { qubit[2] q = [|0β©, |0β©] # Apply Hadamard to first qubit q[0] = H(q[0]) # Apply CNOT q[1] = CNOT(q[0], q[1]) return q } # Execute circuit let result = bell_state() - Circuit composition - Combine and compose quantum circuits
[Compiled] quantum_circuit sub_circuit(qubit q) -> qubit { q = H(q) q = T(q) return q } quantum_circuit main_circuit() -> qubit[3] { qubit[3] q = [|0β©, |0β©, |0β©] # Apply sub-circuit to each qubit for i in 0..3 { q[i] = sub_circuit(q[i]) } # Entangle qubits q[1] = CNOT(q[0], q[1]) q[2] = CNOT(q[1], q[2]) return q } - Quantum circuit optimization - Automatic circuit optimization
[Compiled] quantum_circuit optimized() -> qubit[2] { qubit[2] q = [|0β©, |0β©] # Circuit operations... return q } # Optimize circuit let optimized_circuit = optimize(optimized, target_gates: ["CNOT", "H", "T"], optimize_depth: true )
- Measurement operations - Measure qubits in different bases
[Compiled] qubit q = |+β© # Measure in computational basis let result_z: bool = measure(q) # Returns 0 or 1 # Measure in different bases let result_x: bool = measure_x(q) # X-basis measurement let result_y: bool = measure_y(q) # Y-basis measurement # Partial measurement qubit[3] register = [|0β©, |+β©, |1β©] let first_qubit: bool = measure(register[0]) # Other qubits remain in superposition - Observable operators - Quantum observables and expectation values
[Compiled] qubit q = |+β© # Define observables observable PauliX = X observable PauliY = Y observable PauliZ = Z # Calculate expectation values let exp_x: f64 = expectation(PauliX, q) let exp_y: f64 = expectation(PauliY, q) let exp_z: f64 = expectation(PauliZ, q) # Multi-qubit observables observable ZZ = Z β Z let correlation: f64 = expectation(ZZ, [q0, q1]) - Quantum state tomography - Reconstruct quantum states
[Compiled] # Perform state tomography qubit q = prepare_unknown_state() let reconstructed_state = tomography(q, measurements: 1000, bases: ["X", "Y", "Z"] )
- Quantum algorithm primitives - Low-level algorithm building blocks
[Compiled] # Quantum Fourier Transform (QFT) quantum_circuit qft(qubit[n] q) -> qubit[n] { for i in 0..n { q[i] = H(q[i]) for j in (i+1)..n { q[j] = controlled_phase(2Ο/2^(j-i+1), q[i], q[j]) } } return reverse(q) } # Quantum phase estimation quantum_circuit phase_estimation( qubit[n] ancilla, qubit target, fn U: qubit -> qubit ) -> qubit[n] { # Apply QFT to ancilla ancilla = qft(ancilla) # Apply controlled-U operations for i in 0..n { for _ in 0..(2^i) { target = controlled(U, ancilla[i], target) } } # Inverse QFT ancilla = inverse_qft(ancilla) return ancilla } - Grover's algorithm - Quantum search at qubit level
[Compiled] quantum_circuit grover_search( qubit[n] database, fn oracle: qubit[n] -> qubit[n] ) -> qubit[n] { # Initialize superposition for i in 0..n { database[i] = H(database[i]) } # Grover iterations let iterations = floor(Ο/4 * sqrt(2^n)) for _ in 0..iterations { database = oracle(database) database = grover_diffuser(database) } return database } - Shor's algorithm - Quantum factorization
[Compiled] quantum_circuit shor_factorization(n: i64) -> i64 { # Quantum period finding qubit[log2(n)] register = initialize_superposition() qubit target = |1β© # Modular exponentiation register = modular_exponentiation(register, target, n) # Quantum Fourier Transform register = qft(register) # Measure and extract period let measurement = measure_all(register) let period = continued_fractions(measurement, n) # Classical post-processing return factor_from_period(period, n) }
- Error correction codes - Implement QEC codes
[Compiled] # Three-qubit bit-flip code quantum_circuit encode_bit_flip(qubit logical) -> qubit[3] { qubit[3] physical = [|0β©, |0β©, |0β©] physical[0] = logical physical[1] = CNOT(logical, physical[1]) physical[2] = CNOT(logical, physical[2]) return physical } # Shor's 9-qubit code quantum_circuit encode_shor(qubit logical) -> qubit[9] { # Encode logical qubit into 9 physical qubits # Protects against bit-flip and phase-flip errors } # Surface code quantum_circuit surface_code_encode(qubit logical) -> qubit[n] { # Topological quantum error correction } - Syndrome measurement - Detect and correct errors
[Compiled] quantum_circuit error_correction(qubit[n] encoded) -> qubit[n] { # Measure stabilizers let syndrome = measure_stabilizers(encoded) # Decode syndrome to error location let error_location = decode_syndrome(syndrome) # Apply correction encoded = apply_correction(encoded, error_location) return encoded }
- State vector simulation - Simulate quantum states
[Compiled] # Simulate quantum circuit qubit[3] q = initialize_state([|0β©, |0β©, |0β©]) q = apply_circuit(q, my_circuit) # Get state vector let state: complex[8] = get_state_vector(q) # Calculate probabilities let probabilities: f64[8] = |state|^2 - Density matrix simulation - Mixed state simulation
[Compiled] # Create mixed state let rho: density_matrix = 0.5 * |0β©β¨0| + 0.5 * |1β©β¨1| # Apply quantum channel rho = apply_channel(rho, depolarizing_channel(0.1)) # Calculate fidelity let fidelity: f64 = calculate_fidelity(rho, target_state) - Noise models - Realistic quantum noise simulation
[Compiled] # Define noise model noise_model model = { gate_error: 0.001, # 0.1% gate error measurement_error: 0.01, # 1% measurement error decoherence: { T1: 100e-6, # 100 microseconds T2: 50e-6 # 50 microseconds } } # Simulate with noise qubit q = |+β© q = simulate_with_noise(q, my_circuit, model)
- Hardware abstraction - Unified interface for quantum hardware
[Compiled] # Connect to quantum hardware quantum_backend ibm = connect("ibm_quantum", api_key: "...") quantum_backend google = connect("cirq", processor: "sycamore") quantum_backend ionq = connect("ionq", api_key: "...") # Execute on hardware qubit[5] q = prepare_circuit() let result = execute(q, ibm, shots: 1024) - Pulse-level control - Direct control of quantum hardware
[Compiled] # Define pulse sequences pulse drive_pulse = gaussian_pulse( duration: 100e-9, # 100 nanoseconds amplitude: 0.5, frequency: 5.0e9 # 5 GHz ) pulse readout_pulse = square_pulse( duration: 1e-6, amplitude: 0.3 ) # Schedule pulses schedule pulses = { t=0ns: drive_pulse(channel: "q0_drive"), t=100ns: readout_pulse(channel: "q0_readout") } # Execute pulse sequence let result = execute_pulses(pulses, hardware: ibm) - Calibration - Quantum hardware calibration
[Compiled] # Calibrate qubit let calibration = calibrate_qubit( qubit: "q0", gates: ["X", "Y", "Z", "H"], optimize: true ) # Use calibrated parameters qubit q = |0β© q = X_calibrated(q, calibration.parameters["X"])
- Hybrid algorithms - Combine quantum and classical computation
[Compiled] fn variational_quantum_eigensolver( hamiltonian: matrix, ansatz: quantum_circuit ) -> f64 { # Classical optimizer let optimizer = Adam(learning_rate: 0.01) let params = initialize_parameters() for iteration in 0..100 { # Quantum part: measure expectation value qubit[n] q = ansatz(params) let energy: f64 = expectation(hamiltonian, q) # Classical part: update parameters let gradient = calculate_gradient(energy, params) params = optimizer.update(params, gradient) } return energy } - Parameterized quantum circuits - Trainable quantum circuits
[Compiled] quantum_circuit parameterized_ansatz( params: f64[n], qubit[n] q ) -> qubit[n] { for i in 0..n { q[i] = RY(params[i], q[i]) if i < n-1 { q[i+1] = CNOT(q[i], q[i+1]) } } return q }
Goal: Comprehensive blockchain and Web3 development support
- Multi-chain wallet - Unified wallet interface
- Ethereum wallet support
- Solana wallet support
- Cosmos wallet support
- Polkadot wallet support
- Hardware wallet integration
- Smart contract deployment - Automated deployment
- Contract compilation and deployment
- Verification on block explorers
- Upgradeable contract patterns
- Blockchain event monitoring - Real-time event tracking
- Event subscription
- Event filtering
- Event replay
- DeFi protocols - Decentralized finance support
- DEX integration (Uniswap, SushiSwap)
- Lending protocols (Aave, Compound)
- Yield farming automation
- NFT support - Non-fungible token operations
- NFT minting
- NFT marketplace integration
- Metadata management
- Cross-chain bridges - Multi-chain interoperability
- Bridge protocol integration
- Asset transfers
- Cross-chain messaging
Goal: Native game development capabilities
- Game engine support - Engine integration
- Unity integration
- Unreal Engine integration
- Godot integration
- Game loop - Native game loop
- Frame-based updates
- Delta time support
- Fixed timestep
- Graphics API - Low-level graphics
- OpenGL support
- Vulkan support
- DirectX support
- Metal support
- 2D/3D rendering - Rendering primitives
- Sprite rendering
- 3D model loading
- Shader support
- Physics engine - Physics simulation
- Collision detection
- Rigid body dynamics
- Physics constraints
- Audio system - Game audio
- Sound effect playback
- Music streaming
- 3D positional audio
Goal: High-performance scientific computing
- Linear algebra - Matrix operations
- BLAS integration
- LAPACK integration
- Sparse matrix support
- Scientific libraries - Domain-specific libraries
- FFT (Fast Fourier Transform)
- Numerical integration
- Differential equation solvers
- Statistical functions
- Data processing - Scientific data handling
- NumPy-like arrays
- Pandas-like dataframes
- Time-series analysis
- Visualization - Scientific plotting
- Plotting library integration
- 3D visualization
- Interactive plots
Goal: Embedded and IoT development support
- Microcontroller support - MCU compilation
- ARM Cortex-M support
- AVR support
- RISC-V embedded
- Resource constraints - Memory-constrained environments
- Stack size optimization
- Heap management for embedded
- Flash memory optimization
- IoT protocols - Internet of Things
- MQTT support
- CoAP support
- LoRaWAN integration
- Sensor integration - Hardware sensors
- GPIO access
- I2C/SPI support
- ADC/DAC support
Goal: Cloud-native application development
- Cloud provider SDKs - Cloud service integration
- AWS SDK
- Azure SDK
- GCP SDK
- Container orchestration - Kubernetes integration
- Kubernetes client
- Operator framework
- Custom resource definitions
- Monitoring - Application monitoring
- Metrics collection (Prometheus)
- Distributed tracing (OpenTelemetry)
- Log aggregation
- APM - Application Performance Monitoring
- Performance metrics
- Error tracking
- User analytics
Goal: Continuous language improvement and evolution
- Macros - Metaprogramming
- Macro system
- Compile-time code generation
- Domain-specific language embedding
- Reflection - Runtime reflection
- Type introspection
- Dynamic method invocation
- Serialization support
- Core libraries - Essential libraries
- Collections library
- I/O library
- Networking library
- Crypto library
- Domain libraries - Specialized libraries
- Date/time handling
- Regular expressions
- JSON/XML processing
- HTTP client/server
Note: Phases are not strictly sequential. Some features may be developed in parallel or reordered based on community needs and priorities.
- Installation Guide - Detailed installation instructions
- Quick Start Guide - Get started quickly
- Architecture - Technical architecture details
- Testing Guide - Testing information
This is an early-stage project. Contributions welcome!
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
MIT License
JOEL - One Language, All Layers π