Skip to content

JOEL to be a polymodal language: it can be compiled or interpreted purely from a file header, while giving you systems-level speed (Rust vibes), AI ergonomics (Python), on-chain dev (Solidity), cross-platform apps (React Native/Next.js), low-code workflows (n8n), container/K8s ops, and decentralized storage β€” all in one stack.

Notifications You must be signed in to change notification settings

JJ-Dynamite/JOEL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

63 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 JOEL Programming Language

JOEL (Just-Objects-Events Language) is a polymodal programming language that can be compiled or interpreted based on a simple file header. Write once, run anywhere β€” from systems programming to AI, blockchain to UI.

πŸš€ Quick Start

Installation

Quick Install (Recommended)

curl -fsSL https://joel.val-x.com/api/install | bash

Manual Install

# Clone the repository
git clone https://github.com/JJ-Dynamite/JOEL.git
cd JOEL

# Build and install
cargo build --release
sudo cp target/release/joel /usr/local/bin/joel
sudo chmod +x /usr/local/bin/joel

Local Install (No sudo)

cargo build --release
export PATH="$PATH:$(pwd)/target/release"

See INSTALL.md for detailed instructions.

Verify Installation

joel version
# Should output: JOEL Language v0.1.0

Run Your First Program

joel run examples/hello.joel

Example

Create a file hello.joel:

[Interpreted]

fn greet(name: str) -> str {
  return "Hello " + name
}

fn main() {
  print(greet("JOEL"))
  print("2 + 3 =", 2 + 3)
}

main()

Run it:

joel run hello.joel

✨ Features

Phase 1 - MVP βœ…

  • βœ… Lexer - Tokenizes JOEL source code
  • βœ… Parser - Parses tokens into an AST
  • βœ… VM/Interpreter - Executes [Interpreted] mode
  • βœ… Header Detection - Supports [Compiled] and [Interpreted] modes
  • βœ… Target Hints - Supports [target native], [target wasm32], [target evm], etc.
  • βœ… Basic Types - Numbers, strings, booleans, lists, maps
  • βœ… Control Flow - if/else, while, for loops
  • βœ… Functions - Function definitions and calls
  • βœ… Actors - Actor-based concurrency (syntax support)
  • βœ… Contracts - Smart contract syntax (syntax support)
  • βœ… Components - UI component syntax (syntax support)
  • βœ… Flows - Workflow syntax (syntax support)

Phase 2 - Compilation & Types βœ…

  • βœ… Type System - Comprehensive type system with primitives, collections, and generics
  • βœ… Static Type Checking - Full type checking for [Compiled] mode
  • βœ… Type Inference - Automatic type inference with explicit annotations
  • βœ… Ownership System - Rust-like borrow checker for memory safety
  • βœ… Error Diagnostics - Detailed error messages with source location tracking
  • βœ… LLVM Backend - Infrastructure for native code generation (LLVM IR)
  • βœ… WASM Backend - Infrastructure for WebAssembly compilation
  • βœ… Standard Library - Core modules (core, math, string, collections)

πŸ—οΈ Project Structure

JOEL/
β”œβ”€β”€ src/              # Rust source code
β”‚   β”œβ”€β”€ main.rs       # CLI entry point
β”‚   β”œβ”€β”€ lexer.rs      # Tokenizer
β”‚   β”œβ”€β”€ parser.rs     # Parser
β”‚   β”œβ”€β”€ ast.rs        # Abstract Syntax Tree
β”‚   β”œβ”€β”€ vm.rs         # Virtual Machine / Interpreter
β”‚   β”œβ”€β”€ types.rs      # Type system
β”‚   β”œβ”€β”€ type_checker.rs # Static type checker
β”‚   β”œβ”€β”€ ownership.rs  # Borrow checker
β”‚   β”œβ”€β”€ compiler.rs   # Compilation backends (LLVM, WASM, EVM)
β”‚   β”œβ”€β”€ diagnostics.rs # Error diagnostics
β”‚   └── stdlib.rs     # Standard library modules
β”œβ”€β”€ examples/         # Example JOEL files
β”œβ”€β”€ docs/             # Nextra documentation site
β”‚   β”œβ”€β”€ pages/        # Documentation pages (MDX)
β”‚   β”œβ”€β”€ components/   # React components
β”‚   └── styles/       # Custom styles
β”œβ”€β”€ Cargo.toml        # Rust project config
└── Dockerfile        # Docker build for docs

πŸ“š Language Syntax

Header Modes

[Compiled]        # AOT/JIT compilation mode
[Interpreted]     # VM interpretation mode
[target wasm32]   # Optional target hint

Basic Syntax

[Interpreted]

# Variables
let x = 10
let name: str = "JOEL"

# Functions
fn add(a: i32, b: i32) -> i32 {
  return a + b
}

# Control Flow
if x > 5 {
  print("High")
} else {
  print("Low")
}

# Loops
for i in range(0, 5) {
  print(i)
}

# Actors
actor Counter {
  state let n: i64 = 0
  
  fn inc() {
    self.n += 1
  }
}

# Contracts
[Compiled]
[target evm]

contract Vault {
  state let balance: uint256 = 0
  
  fn deposit() {
    balance += tx.value
  }
}

πŸ› οΈ Commands

# Run in interpreted mode
joel run <file.joel>

# Build for a target
joel build <file.joel> --target native
joel build <file.joel> --target wasm32
joel build <file.joel> --target evm

# Build with optimizations
joel build <file.joel> --target native --optimize

# Build with debug symbols
joel build <file.joel> --target native --debug

# Build for specific architecture
joel build <file.joel> --target native --arch arm64

# Show version
joel version

πŸ“– Documentation

Complete documentation is available online:

🌐 Live Documentation: https://joel.val-x.com

The documentation is built with Nextra (the same framework used for Next.js documentation) and features:

  • ✨ Beautiful UI matching Next.js docs
  • πŸ” Built-in search functionality
  • πŸŒ™ Dark mode support
  • πŸ“± Mobile responsive
  • ⚑ Fast page loads
  • πŸ“ Markdown/MDX support
  • 🎨 Syntax highlighting

Local Development

To run the documentation locally:

# Navigate to docs directory
cd docs

# Install dependencies
npm install

# Start development server
npm run dev

Then open http://localhost:3000 in your browser.

πŸ“– Examples

The examples/ directory contains several example files:

  • hello.joel - Basic syntax and functions
  • arithmetic.joel - Math operations
  • control_flow.joel - Control structures
  • actor.joel - Actor-based concurrency
  • contract.joel - Smart contract example
  • ui_component.joel - UI component example
  • flow.joel - Workflow example
  • deployment.joel - Container deployment
  • build_native.joel - Native compilation example
  • build_wasm.joel - WebAssembly compilation example
  • build_evm.joel - EVM smart contract example
  • build_ios.joel - iOS framework example
  • build_android.joel - Android library example
  • build_cosmos.joel - Cosmos SDK contract example

Run any example:

joel run examples/hello.joel

Build examples:

# Build for native
joel build examples/build_native.joel --target native

# Build for WASM with debug
joel build examples/build_wasm.joel --target wasm32 --debug

# Build smart contract
joel build examples/build_evm.joel --target evm

# Build for iOS
joel build examples/build_ios.joel --target ios

# Build for Android
joel build examples/build_android.joel --target android

# Build Cosmos contract
joel build examples/build_cosmos.joel --target cosmos

See TESTING.md for detailed test information.

πŸ—ΊοΈ Roadmap

Phase 1: Core Language βœ…

  • Lexer - Tokenizes JOEL source code
  • Parser - Builds AST from tokens
  • VM/Interpreter - Executes [Interpreted] mode
  • Basic syntax support (variables, functions, control flow)
  • Built-in functions (print, range)
  • Documentation site with Nextra
  • CLI tool (joel command)
  • Example programs

Phase 2: Compilation & Types βœ…

  • LLVM backend infrastructure for [Compiled] mode
  • WASM target compilation infrastructure
  • Static type checking
  • Type inference improvements
  • Ownership system (Rust-like borrow checker)
  • Error messages and diagnostics
  • Standard library core modules

Phase 3: Specialized Targets βœ…

  • LLVM IR generation for native target
  • WASM binary generation for web target
  • EVM bytecode generation for Ethereum
  • Solana BPF generation
  • Optimization support (--optimize flag)
  • Debug symbols support (--debug flag)
  • Source map generation for WASM
  • Cross-compilation support (x86_64, ARM64, RISC-V) Goal: Complete compilation backends for various deployment targets

3.1 Blockchain Targets

  • EVM bytecode generation - Basic EVM bytecode generation
    • Contract ABI generation (basic)
    • Gas optimization
    • Event emission support
    • Library linking
  • Solana WASM target - Compile to Solana program format
    • BPF bytecode generation (basic)
    • Account management
    • Program-derived addresses
  • Cosmos SDK target - Smart contract compilation
    • WASM contract generation
    • Cosmos-specific features
  • Polkadot/Substrate target - Runtime module compilation
    • WASM runtime module generation
    • Substrate-specific features

3.2 Native & Web Targets

  • LLVM IR generation - Basic LLVM IR code generation
    • Optimization support (--optimize flag)
    • Dead code elimination (basic)
    • Constant folding
    • Inlining hints
    • Link-time optimization (LTO)
    • Advanced inlining strategies
  • WASM binary generation - Basic WebAssembly binary generation
    • Source map generation for WASM (--debug flag)
    • Stack trace support
  • Cross-compilation support - Target different architectures
    • x86_64, ARM64, RISC-V support (--arch flag)
    • iOS and Android architecture support
    • Cross-compilation toolchain
  • Debug symbols and source maps - Enhanced debugging support
    • Basic debug metadata generation
    • Source map generation for WASM
    • Full DWARF debug info generation

3.3 Mobile Targets

  • iOS target - Compile to native iOS frameworks
    • LLVM IR generation for iOS
    • ARM64 iOS architecture support
    • Framework packaging
  • Android target - Compile to native Android libraries
    • LLVM IR generation for Android
    • ARM64 Android architecture support
    • AAR packaging
  • React Native integration - Seamless mobile development

Phase 4: Advanced Features 🚧

Goal: Enable advanced programming paradigms and domain-specific features

4.1 UI & Frontend

  • UI compiler (joelui) - React/React Native output
    • Component to JSX/TSX transformation
    • State management integration (Redux, Zustand, Jotai)
    • Styling system (CSS-in-JS, Tailwind support)
    • Hot module replacement
    • Component tree optimization
    • Virtual DOM generation
  • Web Components - Native web component generation
    • Custom element generation
    • Shadow DOM support
    • Web Component lifecycle hooks
  • Desktop UI - Tauri/Electron integration
    • Tauri backend integration
    • Electron main process support
    • Native window management
  • Mobile UI - React Native integration
    • Native component mapping
    • Platform-specific styling
    • Navigation integration

4.2 Container & Infrastructure

  • Container ops (joelctl) - Docker/K8s integration
    • Dockerfile generation from deployment blocks
    • Multi-stage build support
    • Kubernetes manifest generation
    • Helm chart generation
    • Container orchestration DSL
    • Service mesh configuration (Istio, Linkerd)
  • Serverless deployment - Cloud function deployment
    • AWS Lambda support
    • Vercel Functions
    • Cloudflare Workers
    • Azure Functions
    • Google Cloud Functions
  • CI/CD integration - Automated pipeline generation
    • GitHub Actions templates
    • GitLab CI templates
    • Jenkins pipeline generation
    • CircleCI configuration
    • Build matrix support

4.3 Concurrency & Parallelism

  • Actor system implementation - Full actor model runtime
    • Basic actor runtime infrastructure
    • Message passing framework
    • Actor supervision support (supervisor field)
    • Actor failure handling
    • Actor reference management
    • Distributed actors (network-transparent)
    • Actor lifecycle management
    • Actor pools and load balancing
  • Async/await runtime - Native async support
    • Async/await syntax support
    • Async function parsing
    • Future/promise implementation
    • Event loop integration (Tokio-style)
    • Async I/O operations
    • Async streams and channels
    • Cancellation tokens
  • Parallel execution - Multi-threading support
    • Thread pool management (ParallelRuntime)
    • Data parallelism (parallel map, for, reduce)
    • Lock-free data structures (LockFreeCounter)
    • Work-stealing schedulers
    • Parallel reduction operations

4.4 Pattern Matching & Control Flow

  • Pattern matching improvements - Advanced pattern matching
    • Pattern matching syntax (match statement)
    • Destructuring patterns (tuples, lists, identifiers)
    • Guard clauses (conditional patterns with if)
    • Pattern matching engine
    • Exhaustiveness checking (basic)
    • Overlap detection for patterns
    • Nested pattern matching support
    • Full exhaustiveness checking with type information
    • Pattern guards with expressions
  • Generators & Iterators - Lazy evaluation support
    • Generator syntax (yield keyword)
    • Generator expression support
    • Iterator protocol implementation (JoelIterator trait)
    • Range and List iterators
    • Iterator utilities (map, filter, take)
    • Lazy sequence operations
    • Infinite sequences
  • Coroutines - Cooperative multitasking
    • Coroutine runtime (CoroutineRuntime)
    • Coroutine creation and management
    • Suspend/resume operations
    • Coroutine cancellation
    • Coroutine scheduling
    • Coroutine state persistence

Phase 5: Ecosystem & Tooling

Goal: Build a complete development ecosystem

5.1 Package Management

  • Package manager (joelpkg) - Dependency management
    • Package registry
    • Version resolution
    • Lock file generation
    • Workspace support
  • Module system - Advanced module features
    • Tree-shaking
    • Dynamic imports
    • Module federation

5.2 Developer Experience

  • Language Server Protocol (LSP) - IDE integration
    • Auto-completion
    • Go to definition
    • Refactoring support
    • Inline documentation
  • IDE plugins - Native IDE support
    • VSCode extension
    • IntelliJ/CLion plugin
    • Vim/Neovim support
  • Debugger - Step-through debugging
    • Breakpoints
    • Variable inspection
    • Call stack navigation
    • Watch expressions
  • Profiler - Performance analysis
    • CPU profiling
    • Memory profiling
    • Flame graphs
    • Performance benchmarks

5.3 Testing & Quality

  • Testing framework - Built-in testing support
    • Unit testing
    • Integration testing
    • Property-based testing
    • Test coverage reports
  • Linting & Formatting - Code quality tools
    • Linter rules
    • Auto-formatter
    • Style guide enforcement

5.4 Documentation

  • Documentation generator - API documentation
    • Markdown/HTML output
    • Interactive examples
    • Type documentation
  • Tutorial system - Interactive learning

Phase 6: Database Programming

Goal: Native SQL query support like DuckDB - write SQL directly in JOEL

6.1 SQL as First-Class Datatype

  • SQL datatype - SQL is a native datatype in JOEL
    [Compiled]
    
    # SQL query as a variable with type inference
    sql result = 
      SELECT name, age, salary 
      FROM employees 
      WHERE age > 30 
      ORDER BY salary DESC
    
    # Explicit type annotation
    sql result: sql<{name: str, age: i32, salary: f64}> = 
      SELECT name, age, salary FROM employees
    
    # SQL in function parameters and returns
    fn get_employees(min_age: i32) -> sql<{name: str, age: i32}> {
      sql result = 
        SELECT name, age 
        FROM employees 
        WHERE age > min_age
      return result
    }
    
  • SQL parser and executor - Full SQL standard support
    • SELECT, INSERT, UPDATE, DELETE statements
    • JOIN operations (INNER, LEFT, RIGHT, FULL, CROSS)
    • Subqueries and CTEs (Common Table Expressions)
    • Window functions (ROW_NUMBER, RANK, PARTITION BY, OVER)
    • Aggregations (SUM, COUNT, AVG, MAX, MIN, GROUP BY, HAVING)
    • Set operations (UNION, INTERSECT, EXCEPT)
  • Query optimization - Automatic query optimization
    • Query planner with cost-based optimization
    • Index selection and usage
    • Join reordering and algorithms
    • Predicate pushdown
    • Projection pushdown
  • Columnar storage - Efficient analytical queries
    • Columnar data format
    • Compression (RLE, Dictionary encoding, Delta encoding)
    • Vectorized execution engine
    • SIMD-optimized operations

6.2 SQL Type System & Safety

  • Type-safe SQL queries - Compile-time SQL validation
    [Compiled]
    
    # Type inference from SQL schema
    sql employees: sql<{name: str, age: i32, salary: f64}> = 
      SELECT name, age, salary FROM employees
    
    # Access results with type safety
    for emp in employees {
      print(emp.name, emp.age, emp.salary)
    }
    
    # Type checking for SQL operations
    sql joined: sql<{name: str, dept: str}> = 
      SELECT e.name, d.name as dept
      FROM employees e
      JOIN departments d ON e.department_id = d.id
    
  • SQL schema definition - Define tables in JOEL
    [Compiled]
    
    table employees {
      id: i64 PRIMARY KEY AUTO_INCREMENT,
      name: str NOT NULL,
      age: i32 CHECK (age >= 18),
      salary: f64 DEFAULT 0.0,
      department_id: i64 FOREIGN KEY REFERENCES departments(id),
      created_at: timestamp DEFAULT NOW()
    }
    
    # Indexes
    index idx_employees_age ON employees(age)
    index idx_employees_dept ON employees(department_id)
    
  • Parameterized queries - Safe SQL with type-checked parameters
    [Compiled]
    
    fn find_users(min_age: i32, city: str) -> sql<{id: i64, name: str}> {
      sql results = 
        SELECT id, name 
        FROM users 
        WHERE age > min_age AND city = city
      return results
    }
    
    # Or with explicit parameter binding
    sql query: sql<{name: str}> = 
      SELECT name FROM users WHERE age > ? AND city = ?
    let results = query.bind(25, "NYC")
    
  • SQL expressions in JOEL - Mix SQL and JOEL seamlessly
    [Compiled]
    
    fn calculate_stats() {
      sql avg_salary: sql<{avg: f64}> = 
        SELECT AVG(salary) as avg FROM employees
      
      let avg = avg_salary.first().avg
      
      sql top_earners: sql<{name: str, salary: f64}> = 
        SELECT name, salary 
        FROM employees 
        WHERE salary > avg
        ORDER BY salary DESC
        LIMIT 10
      
      for emp in top_earners {
        print(emp.name, emp.salary)
      }
    }
    

6.3 Database Connectivity & Operations

  • Embedded database - DuckDB-like in-process database
    • No external server required
    • Fast analytical queries
    • Direct file access (CSV, Parquet, JSON, Arrow)
    • In-memory and persistent modes
  • Database connections - Connect to external databases
    [Compiled]
    
    # Connection as a type
    db postgres = connect("postgresql://localhost/mydb")
    
    # Use connection in SQL
    sql users: sql<{id: i64, name: str}> = 
      SELECT id, name FROM users
    USING postgres
    
    # Multiple database support
    db analytics = connect("clickhouse://analytics-server/data")
    sql metrics: sql<{metric: str, value: f64}> = 
      SELECT metric, value FROM metrics
    USING analytics
    
  • Database drivers - Native database support
    • PostgreSQL, MySQL, SQLite
    • ClickHouse, TimescaleDB
    • MongoDB (with SQL interface)
    • Redis (with SQL-like queries)
    • DuckDB (embedded analytics)
  • Connection pooling - Efficient database connections
    [Compiled]
    
    pool db_pool = connection_pool(
      url: "postgresql://localhost/mydb",
      min_connections: 5,
      max_connections: 20
    )
    
  • Transaction support - ACID transactions with SQL syntax
    [Compiled]
    
    transaction {
      sql INSERT INTO accounts (id, balance) VALUES (1, 1000)
      sql INSERT INTO accounts (id, balance) VALUES (2, 500)
      commit
    }
    
    # Or with automatic rollback on error
    transaction {
      sql UPDATE accounts SET balance = balance - 100 WHERE id = 1
      sql UPDATE accounts SET balance = balance + 100 WHERE id = 2
      # Auto-commit on success, auto-rollback on error
    }
    

6.4 Advanced SQL Features

  • Complex queries - Advanced SQL capabilities
    [Compiled]
    
    # Recursive CTEs
    sql org_tree: sql<{id: i64, name: str, level: i32}> = 
      WITH RECURSIVE org AS (
        SELECT id, name, 0 as level FROM departments WHERE parent_id IS NULL
        UNION ALL
        SELECT d.id, d.name, o.level + 1
        FROM departments d
        JOIN org o ON d.parent_id = o.id
      )
      SELECT * FROM org
    
    # PIVOT operations
    sql sales_by_region: sql<{region: str, q1: f64, q2: f64, q3: f64, q4: f64}> = 
      SELECT * FROM (
        SELECT region, quarter, amount FROM sales
      ) PIVOT (
        SUM(amount) FOR quarter IN ('Q1', 'Q2', 'Q3', 'Q4')
      )
    
    # LATERAL joins
    sql top_products: sql<{category: str, product: str, sales: f64}> = 
      SELECT c.name as category, p.name as product, p.sales
      FROM categories c
      CROSS JOIN LATERAL (
        SELECT name, sales FROM products
        WHERE category_id = c.id
        ORDER BY sales DESC LIMIT 3
      ) p
    
  • SQL views - Reusable query definitions as first-class objects
    [Compiled]
    
    view high_earners: sql<{name: str, salary: f64, department: str}> = 
      SELECT e.name, e.salary, d.name as department
      FROM employees e
      JOIN departments d ON e.department_id = d.id
      WHERE e.salary > 100000
    
    # Use view like any SQL query
    sql top_10: sql<{name: str, salary: f64}> = 
      SELECT name, salary FROM high_earners
      ORDER BY salary DESC
      LIMIT 10
    
  • SQL functions - Database functions in JOEL
    [Compiled]
    
    # SQL function that returns SQL result
    fn get_employee_stats(dept_id: i64) -> sql<{count: i64, avg_salary: f64}> {
      sql stats = 
        SELECT COUNT(*) as count, AVG(salary) as avg_salary
        FROM employees
        WHERE department_id = dept_id
      return stats
    }
    
    # SQL function with SQL body
    sql_function calculate_bonus(salary: f64, performance: f64) -> f64 = 
      SELECT salary * performance * 0.1
    
  • SQL triggers - Event-driven database operations
    [Compiled]
    
    trigger on_employee_update AFTER UPDATE ON employees {
      sql INSERT INTO audit_log (table_name, action, timestamp)
      VALUES ('employees', 'UPDATE', NOW())
    }
    
  • SQL indexes - Automatic and manual index management
    [Compiled]
    
    # Automatic index creation from queries
    # Manual index definition
    index idx_employees_name_salary ON employees(name, salary DESC)
    index idx_employees_dept_hash ON employees USING HASH(department_id)
    

6.5 Data Processing & Analytics

  • SQL result manipulation - Work with SQL results in JOEL
    [Compiled]
    
    sql sales: sql<{region: str, amount: f64}> = 
      SELECT region, amount FROM sales
    
    # Iterate over results
    for sale in sales {
      print(sale.region, sale.amount)
    }
    
    # Convert to list
    let sales_list = sales.to_list()
    
    # Filter and transform
    sql filtered: sql<{region: str, total: f64}> = 
      SELECT region, SUM(amount) as total
      FROM sales
      WHERE amount > 1000
      GROUP BY region
    
    # Chain SQL operations
    sql result = 
      SELECT region, SUM(amount) as total
      FROM (SELECT * FROM sales WHERE date > '2024-01-01')
      GROUP BY region
      HAVING SUM(amount) > 10000
    
  • Streaming SQL - Real-time query processing
    [Compiled]
    
    # Continuous queries
    stream sensor_stream = 
      SELECT sensor_id, value, timestamp
      FROM sensor_readings
      WHERE timestamp > NOW() - INTERVAL '1 minute'
    
    # Window functions over streams
    sql windowed: sql<{sensor_id: i64, avg_value: f64}> = 
      SELECT 
        sensor_id,
        AVG(value) OVER (
          PARTITION BY sensor_id 
          ORDER BY timestamp 
          ROWS BETWEEN 9 PRECEDING AND CURRENT ROW
        ) as avg_value
      FROM sensor_stream
    
  • Data connectors - Query external data sources directly
    [Compiled]
    
    # Query CSV files directly (no import needed)
    sql csv_data: sql<{name: str, value: f64}> = 
      SELECT name, value FROM 'data.csv'
    
    # Query Parquet files
    sql parquet_data: sql<{id: i64, metric: f64}> = 
      SELECT id, metric 
      FROM 'analytics.parquet' 
      WHERE date > '2024-01-01'
    
    # Query JSON files
    sql json_data: sql<{id: i64, name: str}> = 
      SELECT id, name FROM 'users.json'
    
    # Query HTTP APIs as tables
    sql api_data: sql<{id: i64, title: str}> = 
      SELECT id, title 
      FROM http('https://api.example.com/posts')
    
    # Query multiple files
    sql combined: sql<{source: str, value: f64}> = 
      SELECT 'csv' as source, value FROM 'data.csv'
      UNION ALL
      SELECT 'parquet' as source, value FROM 'data.parquet'
    
  • Time-series queries - Temporal data handling
    [Compiled]
    
    sql hourly_avg: sql<{hour: timestamp, avg_temp: f64}> = 
      SELECT 
        time_bucket('1 hour', timestamp) as hour,
        AVG(temperature) as avg_temp
      FROM sensor_data
      WHERE timestamp > NOW() - INTERVAL '24 hours'
      GROUP BY hour
      ORDER BY hour
    
    # Time-series functions
    sql trends: sql<{timestamp: timestamp, value: f64, moving_avg: f64}> = 
      SELECT 
        timestamp,
        value,
        AVG(value) OVER (
          ORDER BY timestamp 
          ROWS BETWEEN 11 PRECEDING AND CURRENT ROW
        ) as moving_avg
      FROM time_series_data
    
  • Geospatial queries - Location-based SQL
    [Compiled]
    
    sql nearby: sql<{name: str, distance: f64}> = 
      SELECT 
        name, 
        ST_Distance(location, POINT(40.7128, -74.0060)) as distance
      FROM places
      WHERE ST_DWithin(location, POINT(40.7128, -74.0060), 1000)
      ORDER BY distance
    
    # Geospatial operations
    sql coverage: sql<{area: f64, population: i64}> = 
      SELECT 
        ST_Area(coverage_zone) as area,
        SUM(population) as population
      FROM regions
      WHERE ST_Intersects(coverage_zone, query_area)
      GROUP BY coverage_zone
    

6.6 SQL Toolchain (joelsql)

  • SQL CLI tool - Command-line interface for SQL operations
    # Interactive SQL shell
    joelsql
    
    # Execute SQL file
    joelsql run query.joel
    
    # Connect to database
    joelsql connect postgresql://localhost/mydb
    
    # Query CSV/Parquet files
    joelsql query "SELECT * FROM 'data.csv' WHERE age > 30"
    
    # Export query results
    joelsql query "SELECT * FROM users" --output results.json
    
    # SQL REPL with autocomplete
    joelsql repl
  • SQL file execution - Run SQL queries from files
    # Execute SQL file
    joelsql run analytics.joel
    
    # Execute with parameters
    joelsql run query.joel --param min_age=25 --param city="NYC"
    
    # Execute multiple files
    joelsql run *.joel
  • Database management - Database operations via CLI
    # List databases
    joelsql databases
    
    # List tables
    joelsql tables
    
    # Describe table schema
    joelsql describe users
    
    # Show table data
    joelsql show users --limit 10
    
    # Create database
    joelsql create-db analytics
    
    # Drop database
    joelsql drop-db old_db
  • Query execution and results - Execute and format query results
    # Execute query with formatted output
    joelsql query "SELECT * FROM employees" --format table
    
    # Export to different formats
    joelsql query "SELECT * FROM sales" --output sales.csv
    joelsql query "SELECT * FROM sales" --output sales.json
    joelsql query "SELECT * FROM sales" --output sales.parquet
    
    # Execute with timing
    joelsql query "SELECT * FROM large_table" --timing
    
    # Show query plan
    joelsql explain "SELECT * FROM employees WHERE age > 30"
  • SQL script execution - Run SQL scripts with variables
    # Execute script with variables
    joelsql script report.joel --vars year=2024 quarter=Q1
    
    # Execute with environment variables
    joelsql script query.joel --env
    
    # Batch execution
    joelsql batch queries.joel
  • Database migration - Schema versioning and migrations
    # Create migration
    joelsql migration create add_users_table
    
    # Run migrations
    joelsql migration up
    
    # Rollback migration
    joelsql migration down
    
    # Show migration status
    joelsql migration status
  • SQL linting and formatting - Code quality for SQL
    # Lint SQL file
    joelsql lint query.joel
    
    # Format SQL file
    joelsql format query.joel
    
    # Check SQL syntax
    joelsql check query.joel
  • Query optimization - Analyze and optimize queries
    # Analyze query performance
    joelsql analyze "SELECT * FROM large_table WHERE id = 1"
    
    # Suggest indexes
    joelsql suggest-indexes query.joel
    
    # Optimize query
    joelsql optimize query.joel --output optimized.joel
  • Data import/export - Bulk data operations
    # Import CSV to table
    joelsql import users.csv --table users
    
    # Export table to CSV
    joelsql export users --output users.csv
    
    # Import from JSON
    joelsql import data.json --table products
    
    # Export to Parquet
    joelsql export sales --output sales.parquet --format parquet
  • Connection management - Manage database connections
    # Add connection
    joelsql connection add prod postgresql://prod-server/db
    
    # List connections
    joelsql connection list
    
    # Test connection
    joelsql connection test prod
    
    # Remove connection
    joelsql connection remove prod
    
    # Use specific connection
    joelsql query "SELECT * FROM users" --connection prod

6.7 SQL Performance & Optimization

  • Query caching - Automatic caching of query results
    [Compiled]
    
    # Automatic caching for repeated queries
    sql cached_result: sql<{id: i64, name: str}> = 
      SELECT id, name FROM users
    CACHE FOR 5 MINUTES
    
    # Manual cache control
    cache.clear()
    cache.invalidate("users")
    
  • Materialized views - Pre-computed query results
    [Compiled]
    
    materialized view daily_sales: sql<{date: date, total: f64}> = 
      SELECT 
        DATE(created_at) as date,
        SUM(amount) as total
      FROM sales
      GROUP BY DATE(created_at)
    
    # Auto-refresh materialized views
    REFRESH MATERIALIZED VIEW daily_sales
    
  • Query profiling - Analyze query performance
    [Compiled]
    
    sql result = SELECT * FROM employees WHERE age > 30
    let profile = result.profile()
    print("Execution time:", profile.execution_time)
    print("Rows scanned:", profile.rows_scanned)
    print("Indexes used:", profile.indexes_used)
    
  • Execution plans - EXPLAIN query plans with SQL syntax
    [Compiled]
    
    sql plan: sql<{operation: str, cost: f64}> = 
      EXPLAIN SELECT * FROM employees WHERE age > 30
    
    # Or get plan as structured data
    let plan_data = explain(
      SELECT * FROM employees WHERE age > 30
    )
    print(plan_data)
    
  • Parallel query execution - Multi-threaded queries
    [Compiled]
    
    # Automatic parallelization
    sql parallel_result = 
      SELECT * FROM large_table
      PARALLEL 4  # Use 4 threads
    
    # Parallel aggregations
    sql aggregated = 
      SELECT region, SUM(sales) as total
      FROM sales
      GROUP BY region
      PARALLEL
    
  • Query hints - Manual optimization hints
    [Compiled]
    
    sql optimized = 
      SELECT /*+ USE_INDEX(idx_age) */ *
      FROM employees
      WHERE age > 30
    
    # Join hints
    sql joined = 
      SELECT * FROM employees e
      /*+ USE_HASH_JOIN */ JOIN departments d ON e.dept_id = d.id
    
  • Query compilation - Compile SQL to native code
    [Compiled]
    
    # JIT-compiled queries for hot paths
    sql compiled_query: sql<{result: f64}> = 
      SELECT SUM(amount) as result FROM sales
    COMPILE  # Compile to native code for repeated execution
    

Phase 7: Quantum Programming (High-Level)

Goal: High-level quantum computing support and abstractions

7.1 Quantum Circuit Compilation

  • Quantum gate operations - Basic quantum gates
    • Pauli gates (X, Y, Z)
    • Hadamard, CNOT, Toffoli
    • Rotation gates (RX, RY, RZ)
    • Phase gates (S, T, P)
  • Quantum circuit DSL - High-level quantum programming
    • Circuit construction API
    • Measurement operations
    • Quantum error correction
    • Circuit visualization
  • Quantum algorithm library - Common algorithms
    • Grover's algorithm
    • Shor's algorithm
    • Quantum Fourier Transform
    • Quantum phase estimation
    • Variational Quantum Eigensolver (VQE)

7.2 Quantum Backends

  • Qiskit integration - IBM Quantum support
    • Circuit translation to Qiskit
    • IBM Quantum device access
    • Job submission and monitoring
  • Cirq integration - Google Quantum AI
    • Circuit translation to Cirq
    • Google Quantum processor access
  • Q# integration - Microsoft Quantum
    • Circuit translation to Q#
    • Azure Quantum integration
  • Quantum simulators - Local quantum simulation
    • State vector simulation
    • Density matrix simulation
    • Noise models
    • GPU-accelerated simulation

7.3 Hybrid Classical-Quantum

  • Variational algorithms - VQE, QAOA
    • Parameter optimization
    • Gradient computation
    • Classical optimizers integration
  • Quantum machine learning - QML models
    • Quantum neural networks
    • Quantum kernel methods
    • Quantum data encoding
  • Quantum optimization - Combinatorial optimization
    • QAOA implementation
    • Quantum approximate optimization
    • Portfolio optimization

Phase 8: Performance & Optimization

Goal: Maximize runtime performance and efficiency

8.1 Compiler Optimizations

  • Advanced optimizations - Aggressive optimization passes
    • Loop optimization (unrolling, vectorization, fusion)
    • Constant folding and propagation
    • Dead code elimination
    • Function inlining (aggressive)
    • Inter-procedural optimization
    • Profile-guided optimization (PGO)
  • JIT compilation - Just-in-time compilation for interpreted mode
    • Hot path detection
    • Adaptive optimization
    • Deoptimization support
    • Tiered compilation
  • SIMD support - Vectorized operations
    • Automatic vectorization
    • SIMD intrinsics
    • Vector type support
  • GPU acceleration - Parallel computing
    • CUDA support
    • OpenCL support
    • Metal support (Apple)
    • Vulkan compute shaders

8.2 Memory Management

  • Advanced GC strategies - Garbage collection improvements
    • Generational GC
    • Incremental GC
    • Concurrent GC
    • GC tuning and profiling
  • Memory pools - Custom allocators
    • Arena allocators
    • Pool allocators
    • Stack allocators
  • Zero-copy operations - Efficient data handling
    • Zero-copy I/O
    • Memory-mapped files
    • Buffer sharing

8.3 Performance Tooling

  • Performance profiler (joelperf) - Built-in profiling
    • CPU profiling
    • Memory profiling
    • I/O profiling
    • Flame graphs
    • Performance benchmarks
  • Optimization hints - Manual optimization guidance
    • #[inline] attributes
    • #[cold] attributes
    • Branch prediction hints

Phase 9: Security & Safety

Goal: Enterprise-grade security features and safety guarantees

9.1 Security Features

  • Static analysis (joelsec) - Security vulnerability detection
    • SQL injection detection
    • XSS vulnerability scanning
    • Buffer overflow detection
    • Race condition detection
    • Security audit reports
  • Sandboxing - Safe code execution
    • Capability-based security
    • Resource limits
    • Network isolation
    • File system restrictions
  • Capability system - Fine-grained permissions
    • Capability tokens
    • Permission checking
    • Principle of least privilege
  • Cryptographic primitives - Built-in crypto support
    • Hashing (SHA-256, SHA-512, BLAKE2, BLAKE3)
    • Encryption (AES-256, ChaCha20-Poly1305)
    • Digital signatures (Ed25519, ECDSA)
    • Key derivation (PBKDF2, Argon2)
    • Random number generation (CSPRNG)

9.2 Formal Verification

  • Proof system - Mathematical correctness proofs
    • Hoare logic integration
    • Proof assistants (Coq, Lean)
    • Automated theorem proving
  • Contract verification - Smart contract formal verification
    • EVM contract verification
    • Solana program verification
    • Property-based testing
  • Type-level proofs - Dependent types
    • Refinement types
    • Proof-carrying code
    • Type-level arithmetic

9.3 Security Tooling

  • Security scanner - Automated security analysis
    • Dependency vulnerability scanning
    • License compliance checking
    • Secret detection
  • Code signing - Authenticity verification
    • Package signing
    • Binary signing
    • Signature verification

Phase 10: Interoperability

Goal: Seamless integration with existing ecosystems

10.1 Foreign Function Interface (joelffi)

  • C FFI - Call C functions directly
    • C function binding
    • C struct support
    • C callback support
    • C library linking
  • Rust FFI - Interoperate with Rust crates
    • Rust crate integration
    • Rust trait implementation
    • Rust async runtime integration
  • Python interop - Call Python from JOEL
    • Python C API integration
    • Python module import
    • NumPy array support
    • Python async support
  • JavaScript interop - Browser/Node.js integration
    • WebAssembly interop
    • Node.js module support
    • Browser API access
    • JavaScript async/await

10.2 Protocol Support

  • gRPC - RPC framework support
    • Protocol buffer support
    • gRPC client/server
    • Streaming RPC
  • GraphQL - GraphQL query generation
    • GraphQL schema generation
    • Query builder
    • Subscription support
  • REST API - HTTP client/server
    • HTTP client library
    • REST server framework
    • OpenAPI/Swagger generation
  • WebSocket - Real-time communication
    • WebSocket client/server
    • Binary protocol support
    • Message framing

10.3 Data Format Support

  • Serialization - Data format support
    • JSON (native)
    • MessagePack
    • Protocol Buffers
    • CBOR
    • BSON
  • Database drivers - Database connectivity
    • PostgreSQL driver
    • MySQL driver
    • MongoDB driver
    • Redis driver

Phase 11: Distributed Systems

Goal: Built-in distributed computing support

11.1 Distributed Computing

  • Distributed actors - Network-transparent actors
    • Actor location transparency
    • Remote actor communication
    • Actor migration
    • Distributed actor supervision
  • Consensus algorithms - Distributed consensus
    • Raft implementation
    • PBFT (Practical Byzantine Fault Tolerance)
    • Paxos variant
    • Leader election
  • Distributed storage - Distributed data structures
    • Distributed hash tables (DHT)
    • CRDTs (Conflict-free Replicated Data Types)
    • Distributed caching
    • Replication strategies
  • Service mesh - Microservices orchestration
    • Service discovery
    • Load balancing
    • Circuit breakers
    • Distributed tracing

11.2 Decentralized Systems

  • Decentralized storage (dstore) - IPFS/Arweave integration
    • IPFS integration
    • Arweave integration
    • Filecoin support
    • Content addressing
  • Blockchain integration - Multi-chain support
    • Multi-chain wallet support
    • Cross-chain bridges
    • Blockchain event monitoring
  • P2P networking - Peer-to-peer protocols
    • libp2p integration
    • DHT implementation
    • Peer discovery
    • NAT traversal

Phase 12: AI/ML Integration

Goal: Native machine learning capabilities

12.1 Machine Learning

  • AI/ML module (ai) - Tensor operations
    • Neural network primitives
    • Automatic differentiation (autograd)
    • Model training pipelines
    • Loss functions library
    • Optimizers (SGD, Adam, RMSprop)
  • Model formats - Model interoperability
    • ONNX support
    • TensorFlow SavedModel
    • PyTorch model loading
    • Model conversion tools
  • GPU acceleration - ML acceleration
    • CUDA for ML
    • ROCm for ML
    • Tensor operations on GPU
    • Mixed precision training

12.2 LLM Integration

  • LLM API integration - Large language model support
    • OpenAI API integration
    • Anthropic Claude API
    • Local LLM support (Llama, Mistral)
    • Streaming responses
  • Embedding support - Vector embeddings
    • Text embeddings
    • Image embeddings
    • Vector similarity search
    • Embedding databases
  • Prompt engineering - DSL for prompts
    • Prompt templates
    • Few-shot learning
    • Chain-of-thought prompting
  • Agent frameworks - AI agent development
    • ReAct agents
    • Tool calling
    • Memory management
    • Multi-agent systems

Phase 13: Real-time & Streaming

Goal: Real-time data processing and event streaming

13.1 Streaming (joelstream)

  • Event streams - Event-driven architecture
    • Stream processing DSL
    • Event sourcing
    • Event replay
    • Stream backpressure handling
  • Time-series processing - Real-time analytics
    • Time-windowed aggregations
    • Sliding window operations
    • Time-series databases
    • Anomaly detection
  • Complex event processing - CEP engine
    • Pattern matching on streams
    • Temporal event patterns
    • Event correlation
  • Stream joins - Multi-stream operations
    • Stream-to-stream joins
    • Stream-to-table joins
    • Windowed joins

13.2 Real-time Systems

  • WebRTC support - Real-time communication
    • Peer-to-peer connections
    • Media streaming
    • Data channels
  • WebSocket server - Real-time web apps
    • WebSocket server framework
    • Binary protocol support
    • Connection management
  • Message queues - Message broker integration
    • Kafka integration
    • NATS integration
    • RabbitMQ support
    • Redis Streams

Phase 14: Quantum Programming (Qubit-Level)

Goal: Low-level qubit manipulation and quantum circuit programming

14.1 Qubit Operations

  • Qubit datatype - Native qubit type in JOEL
    [Compiled]
    
    # Qubit declaration and initialization
    qubit q0 = |0⟩
    qubit q1 = |1⟩
    qubit q2 = |+⟩  # Superposition state
    
    # Qubit registers
    qubit[3] register = [|0⟩, |0⟩, |0⟩]
    qubit[5] entangled_pair = create_bell_pair()
    
  • Quantum state manipulation - Direct qubit state operations
    [Compiled]
    
    # Initialize qubit in specific state
    qubit q = |0⟩
    
    # Apply quantum gates
    q = H(q)        # Hadamard gate
    q = X(q)        # Pauli-X (NOT gate)
    q = Y(q)        # Pauli-Y gate
    q = Z(q)        # Pauli-Z gate
    
    # Rotation gates
    q = RX(Ο€/2, q)  # Rotation around X-axis
    q = RY(Ο€/4, q)  # Rotation around Y-axis
    q = RZ(Ο€/8, q)  # Rotation around Z-axis
    
    # Controlled operations
    qubit control = |1⟩
    qubit target = |0⟩
    target = CNOT(control, target)  # Controlled-NOT
    target = CZ(control, target)     # Controlled-Z
    
  • Quantum gates library - Comprehensive gate operations
    • Single-qubit gates (H, X, Y, Z, S, T, Phase)
    • Two-qubit gates (CNOT, CZ, SWAP, iSWAP)
    • Multi-qubit gates (Toffoli, Fredkin, CCX, CCZ)
    • Custom unitary gates
    • Parameterized gates

14.2 Quantum Circuit Construction

  • Quantum circuit DSL - Build circuits with qubit-level control
    [Compiled]
    
    # Define quantum circuit
    quantum_circuit bell_state() -> qubit[2] {
      qubit[2] q = [|0⟩, |0⟩]
      
      # Apply Hadamard to first qubit
      q[0] = H(q[0])
      
      # Apply CNOT
      q[1] = CNOT(q[0], q[1])
      
      return q
    }
    
    # Execute circuit
    let result = bell_state()
    
  • Circuit composition - Combine and compose quantum circuits
    [Compiled]
    
    quantum_circuit sub_circuit(qubit q) -> qubit {
      q = H(q)
      q = T(q)
      return q
    }
    
    quantum_circuit main_circuit() -> qubit[3] {
      qubit[3] q = [|0⟩, |0⟩, |0⟩]
      
      # Apply sub-circuit to each qubit
      for i in 0..3 {
        q[i] = sub_circuit(q[i])
      }
      
      # Entangle qubits
      q[1] = CNOT(q[0], q[1])
      q[2] = CNOT(q[1], q[2])
      
      return q
    }
    
  • Quantum circuit optimization - Automatic circuit optimization
    [Compiled]
    
    quantum_circuit optimized() -> qubit[2] {
      qubit[2] q = [|0⟩, |0⟩]
      # Circuit operations...
      return q
    }
    
    # Optimize circuit
    let optimized_circuit = optimize(optimized, 
      target_gates: ["CNOT", "H", "T"],
      optimize_depth: true
    )
    

14.3 Quantum Measurement & Observables

  • Measurement operations - Measure qubits in different bases
    [Compiled]
    
    qubit q = |+⟩
    
    # Measure in computational basis
    let result_z: bool = measure(q)  # Returns 0 or 1
    
    # Measure in different bases
    let result_x: bool = measure_x(q)  # X-basis measurement
    let result_y: bool = measure_y(q)  # Y-basis measurement
    
    # Partial measurement
    qubit[3] register = [|0⟩, |+⟩, |1⟩]
    let first_qubit: bool = measure(register[0])
    # Other qubits remain in superposition
    
  • Observable operators - Quantum observables and expectation values
    [Compiled]
    
    qubit q = |+⟩
    
    # Define observables
    observable PauliX = X
    observable PauliY = Y
    observable PauliZ = Z
    
    # Calculate expectation values
    let exp_x: f64 = expectation(PauliX, q)
    let exp_y: f64 = expectation(PauliY, q)
    let exp_z: f64 = expectation(PauliZ, q)
    
    # Multi-qubit observables
    observable ZZ = Z βŠ— Z
    let correlation: f64 = expectation(ZZ, [q0, q1])
    
  • Quantum state tomography - Reconstruct quantum states
    [Compiled]
    
    # Perform state tomography
    qubit q = prepare_unknown_state()
    let reconstructed_state = tomography(q, 
      measurements: 1000,
      bases: ["X", "Y", "Z"]
    )
    

14.4 Quantum Algorithms at Qubit Level

  • Quantum algorithm primitives - Low-level algorithm building blocks
    [Compiled]
    
    # Quantum Fourier Transform (QFT)
    quantum_circuit qft(qubit[n] q) -> qubit[n] {
      for i in 0..n {
        q[i] = H(q[i])
        for j in (i+1)..n {
          q[j] = controlled_phase(2Ο€/2^(j-i+1), q[i], q[j])
        }
      }
      return reverse(q)
    }
    
    # Quantum phase estimation
    quantum_circuit phase_estimation(
      qubit[n] ancilla,
      qubit target,
      fn U: qubit -> qubit
    ) -> qubit[n] {
      # Apply QFT to ancilla
      ancilla = qft(ancilla)
      
      # Apply controlled-U operations
      for i in 0..n {
        for _ in 0..(2^i) {
          target = controlled(U, ancilla[i], target)
        }
      }
      
      # Inverse QFT
      ancilla = inverse_qft(ancilla)
      return ancilla
    }
    
  • Grover's algorithm - Quantum search at qubit level
    [Compiled]
    
    quantum_circuit grover_search(
      qubit[n] database,
      fn oracle: qubit[n] -> qubit[n]
    ) -> qubit[n] {
      # Initialize superposition
      for i in 0..n {
        database[i] = H(database[i])
      }
      
      # Grover iterations
      let iterations = floor(Ο€/4 * sqrt(2^n))
      for _ in 0..iterations {
        database = oracle(database)
        database = grover_diffuser(database)
      }
      
      return database
    }
    
  • Shor's algorithm - Quantum factorization
    [Compiled]
    
    quantum_circuit shor_factorization(n: i64) -> i64 {
      # Quantum period finding
      qubit[log2(n)] register = initialize_superposition()
      qubit target = |1⟩
      
      # Modular exponentiation
      register = modular_exponentiation(register, target, n)
      
      # Quantum Fourier Transform
      register = qft(register)
      
      # Measure and extract period
      let measurement = measure_all(register)
      let period = continued_fractions(measurement, n)
      
      # Classical post-processing
      return factor_from_period(period, n)
    }
    

14.5 Quantum Error Correction

  • Error correction codes - Implement QEC codes
    [Compiled]
    
    # Three-qubit bit-flip code
    quantum_circuit encode_bit_flip(qubit logical) -> qubit[3] {
      qubit[3] physical = [|0⟩, |0⟩, |0⟩]
      physical[0] = logical
      physical[1] = CNOT(logical, physical[1])
      physical[2] = CNOT(logical, physical[2])
      return physical
    }
    
    # Shor's 9-qubit code
    quantum_circuit encode_shor(qubit logical) -> qubit[9] {
      # Encode logical qubit into 9 physical qubits
      # Protects against bit-flip and phase-flip errors
    }
    
    # Surface code
    quantum_circuit surface_code_encode(qubit logical) -> qubit[n] {
      # Topological quantum error correction
    }
    
  • Syndrome measurement - Detect and correct errors
    [Compiled]
    
    quantum_circuit error_correction(qubit[n] encoded) -> qubit[n] {
      # Measure stabilizers
      let syndrome = measure_stabilizers(encoded)
      
      # Decode syndrome to error location
      let error_location = decode_syndrome(syndrome)
      
      # Apply correction
      encoded = apply_correction(encoded, error_location)
      
      return encoded
    }
    

14.6 Quantum Simulation & Emulation

  • State vector simulation - Simulate quantum states
    [Compiled]
    
    # Simulate quantum circuit
    qubit[3] q = initialize_state([|0⟩, |0⟩, |0⟩])
    q = apply_circuit(q, my_circuit)
    
    # Get state vector
    let state: complex[8] = get_state_vector(q)
    
    # Calculate probabilities
    let probabilities: f64[8] = |state|^2
    
  • Density matrix simulation - Mixed state simulation
    [Compiled]
    
    # Create mixed state
    let rho: density_matrix = 0.5 * |0⟩⟨0| + 0.5 * |1⟩⟨1|
    
    # Apply quantum channel
    rho = apply_channel(rho, depolarizing_channel(0.1))
    
    # Calculate fidelity
    let fidelity: f64 = calculate_fidelity(rho, target_state)
    
  • Noise models - Realistic quantum noise simulation
    [Compiled]
    
    # Define noise model
    noise_model model = {
      gate_error: 0.001,      # 0.1% gate error
      measurement_error: 0.01, # 1% measurement error
      decoherence: {
        T1: 100e-6,  # 100 microseconds
        T2: 50e-6    # 50 microseconds
      }
    }
    
    # Simulate with noise
    qubit q = |+⟩
    q = simulate_with_noise(q, my_circuit, model)
    

14.7 Quantum Hardware Integration

  • Hardware abstraction - Unified interface for quantum hardware
    [Compiled]
    
    # Connect to quantum hardware
    quantum_backend ibm = connect("ibm_quantum", api_key: "...")
    quantum_backend google = connect("cirq", processor: "sycamore")
    quantum_backend ionq = connect("ionq", api_key: "...")
    
    # Execute on hardware
    qubit[5] q = prepare_circuit()
    let result = execute(q, ibm, shots: 1024)
    
  • Pulse-level control - Direct control of quantum hardware
    [Compiled]
    
    # Define pulse sequences
    pulse drive_pulse = gaussian_pulse(
      duration: 100e-9,  # 100 nanoseconds
      amplitude: 0.5,
      frequency: 5.0e9   # 5 GHz
    )
    
    pulse readout_pulse = square_pulse(
      duration: 1e-6,
      amplitude: 0.3
    )
    
    # Schedule pulses
    schedule pulses = {
      t=0ns: drive_pulse(channel: "q0_drive"),
      t=100ns: readout_pulse(channel: "q0_readout")
    }
    
    # Execute pulse sequence
    let result = execute_pulses(pulses, hardware: ibm)
    
  • Calibration - Quantum hardware calibration
    [Compiled]
    
    # Calibrate qubit
    let calibration = calibrate_qubit(
      qubit: "q0",
      gates: ["X", "Y", "Z", "H"],
      optimize: true
    )
    
    # Use calibrated parameters
    qubit q = |0⟩
    q = X_calibrated(q, calibration.parameters["X"])
    

14.8 Quantum-Classical Hybrid Programming

  • Hybrid algorithms - Combine quantum and classical computation
    [Compiled]
    
    fn variational_quantum_eigensolver(
      hamiltonian: matrix,
      ansatz: quantum_circuit
    ) -> f64 {
      # Classical optimizer
      let optimizer = Adam(learning_rate: 0.01)
      let params = initialize_parameters()
      
      for iteration in 0..100 {
        # Quantum part: measure expectation value
        qubit[n] q = ansatz(params)
        let energy: f64 = expectation(hamiltonian, q)
        
        # Classical part: update parameters
        let gradient = calculate_gradient(energy, params)
        params = optimizer.update(params, gradient)
      }
      
      return energy
    }
    
  • Parameterized quantum circuits - Trainable quantum circuits
    [Compiled]
    
    quantum_circuit parameterized_ansatz(
      params: f64[n],
      qubit[n] q
    ) -> qubit[n] {
      for i in 0..n {
        q[i] = RY(params[i], q[i])
        if i < n-1 {
          q[i+1] = CNOT(q[i], q[i+1])
        }
      }
      return q
    }
    

Phase 15: Web3 & Blockchain Integration

Goal: Comprehensive blockchain and Web3 development support

15.1 Blockchain Development

  • Multi-chain wallet - Unified wallet interface
    • Ethereum wallet support
    • Solana wallet support
    • Cosmos wallet support
    • Polkadot wallet support
    • Hardware wallet integration
  • Smart contract deployment - Automated deployment
    • Contract compilation and deployment
    • Verification on block explorers
    • Upgradeable contract patterns
  • Blockchain event monitoring - Real-time event tracking
    • Event subscription
    • Event filtering
    • Event replay

15.2 DeFi Integration

  • DeFi protocols - Decentralized finance support
    • DEX integration (Uniswap, SushiSwap)
    • Lending protocols (Aave, Compound)
    • Yield farming automation
  • NFT support - Non-fungible token operations
    • NFT minting
    • NFT marketplace integration
    • Metadata management

15.3 Cross-Chain Operations

  • Cross-chain bridges - Multi-chain interoperability
    • Bridge protocol integration
    • Asset transfers
    • Cross-chain messaging

Phase 16: Game Development

Goal: Native game development capabilities

16.1 Game Engine Integration

  • Game engine support - Engine integration
    • Unity integration
    • Unreal Engine integration
    • Godot integration
  • Game loop - Native game loop
    • Frame-based updates
    • Delta time support
    • Fixed timestep

16.2 Graphics & Rendering

  • Graphics API - Low-level graphics
    • OpenGL support
    • Vulkan support
    • DirectX support
    • Metal support
  • 2D/3D rendering - Rendering primitives
    • Sprite rendering
    • 3D model loading
    • Shader support

16.3 Game Systems

  • Physics engine - Physics simulation
    • Collision detection
    • Rigid body dynamics
    • Physics constraints
  • Audio system - Game audio
    • Sound effect playback
    • Music streaming
    • 3D positional audio

Phase 17: Scientific Computing

Goal: High-performance scientific computing

17.1 Numerical Computing

  • Linear algebra - Matrix operations
    • BLAS integration
    • LAPACK integration
    • Sparse matrix support
  • Scientific libraries - Domain-specific libraries
    • FFT (Fast Fourier Transform)
    • Numerical integration
    • Differential equation solvers
    • Statistical functions

17.2 Data Analysis

  • Data processing - Scientific data handling
    • NumPy-like arrays
    • Pandas-like dataframes
    • Time-series analysis
  • Visualization - Scientific plotting
    • Plotting library integration
    • 3D visualization
    • Interactive plots

Phase 18: Embedded Systems

Goal: Embedded and IoT development support

18.1 Embedded Targets

  • Microcontroller support - MCU compilation
    • ARM Cortex-M support
    • AVR support
    • RISC-V embedded
  • Resource constraints - Memory-constrained environments
    • Stack size optimization
    • Heap management for embedded
    • Flash memory optimization

18.2 IoT Integration

  • IoT protocols - Internet of Things
    • MQTT support
    • CoAP support
    • LoRaWAN integration
  • Sensor integration - Hardware sensors
    • GPIO access
    • I2C/SPI support
    • ADC/DAC support

Phase 19: Cloud Native

Goal: Cloud-native application development

19.1 Cloud Services

  • Cloud provider SDKs - Cloud service integration
    • AWS SDK
    • Azure SDK
    • GCP SDK
  • Container orchestration - Kubernetes integration
    • Kubernetes client
    • Operator framework
    • Custom resource definitions

19.2 Observability

  • Monitoring - Application monitoring
    • Metrics collection (Prometheus)
    • Distributed tracing (OpenTelemetry)
    • Log aggregation
  • APM - Application Performance Monitoring
    • Performance metrics
    • Error tracking
    • User analytics

Phase 20: Language Evolution

Goal: Continuous language improvement and evolution

20.1 Language Features

  • Macros - Metaprogramming
    • Macro system
    • Compile-time code generation
    • Domain-specific language embedding
  • Reflection - Runtime reflection
    • Type introspection
    • Dynamic method invocation
    • Serialization support

20.2 Standard Library Expansion

  • Core libraries - Essential libraries
    • Collections library
    • I/O library
    • Networking library
    • Crypto library
  • Domain libraries - Specialized libraries
    • Date/time handling
    • Regular expressions
    • JSON/XML processing
    • HTTP client/server

Note: Phases are not strictly sequential. Some features may be developed in parallel or reordered based on community needs and priorities.

πŸ“š Additional Resources

🀝 Contributing

This is an early-stage project. Contributions welcome!

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“„ License

MIT License


JOEL - One Language, All Layers πŸš€

About

JOEL to be a polymodal language: it can be compiled or interpreted purely from a file header, while giving you systems-level speed (Rust vibes), AI ergonomics (Python), on-chain dev (Solidity), cross-platform apps (React Native/Next.js), low-code workflows (n8n), container/K8s ops, and decentralized storage β€” all in one stack.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages