|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Constant to store the modulo value, used to handle large numbers |
| 4 | + static const int MOD = 1e9 + 7; |
| 5 | + |
| 6 | + // Function to calculate the number of ways to roll dice to achieve the target using space-optimized DP |
| 7 | + long long solve(int dice, int faces, int target) { |
| 8 | + // Base case: If the target becomes negative, it's not possible to achieve it |
| 9 | + if (target < 0) return 0; |
| 10 | + |
| 11 | + // Base case: If there are no dice but the target is non-zero, it's an invalid configuration |
| 12 | + if (dice == 0 && target != 0) return 0; |
| 13 | + |
| 14 | + // Base case: If there are dice left but the target is already zero, it's invalid |
| 15 | + if (target == 0 && dice != 0) return 0; |
| 16 | + |
| 17 | + // Previous and current state arrays for space optimization |
| 18 | + // `prev` represents the number of ways to achieve a target with `d-1` dice |
| 19 | + // `curr` represents the number of ways to achieve a target with `d` dice |
| 20 | + vector<long long> prev(target + 1, 0); |
| 21 | + vector<long long> curr(target + 1, 0); |
| 22 | + |
| 23 | + // Initialize the base case: There is exactly one way to achieve a target of 0 with 0 dice |
| 24 | + prev[0] = 1; |
| 25 | + |
| 26 | + // Iterate over the number of dice |
| 27 | + for (int d = 1; d <= dice; d++) { |
| 28 | + // Iterate over the target values |
| 29 | + for (int t = 1; t <= target; t++) { |
| 30 | + long long ans = 0; |
| 31 | + |
| 32 | + // Consider each face value from 1 to `faces` |
| 33 | + for (int f = 1; f <= faces; f++) { |
| 34 | + // If the current target `t` is greater than or equal to the face value `f`, |
| 35 | + // add the number of ways to achieve the remaining target (t-f) with one less die |
| 36 | + if (t - f >= 0) |
| 37 | + ans = (ans + prev[t - f]) % MOD; |
| 38 | + } |
| 39 | + |
| 40 | + // Update the current state for the current target |
| 41 | + curr[t] = ans; |
| 42 | + } |
| 43 | + |
| 44 | + // Move to the next dice: Copy `curr` to `prev` for the next iteration |
| 45 | + prev = curr; |
| 46 | + } |
| 47 | + |
| 48 | + // Return the number of ways to achieve the target with the given number of dice |
| 49 | + return prev[target]; |
| 50 | + } |
| 51 | + |
| 52 | + // Function to calculate the number of ways to roll `n` dice with `k` faces to achieve `target` |
| 53 | + int numRollsToTarget(int n, int k, int target) { |
| 54 | + // Call the helper function to solve the problem using space-optimized DP |
| 55 | + return solve(n, k, target); |
| 56 | + } |
| 57 | +}; |
0 commit comments