|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Constant to store the modulo value as the result can be large |
| 4 | + static const int MOD = 1e9 + 7; |
| 5 | + |
| 6 | + // Function to calculate the number of ways to roll dice to achieve the target using bottom-up DP |
| 7 | + long long solve(int dice, int faces, int target) { |
| 8 | + // Base case: If the target becomes negative, it's not possible to achieve it |
| 9 | + if (target < 0) return 0; |
| 10 | + |
| 11 | + // Base case: If there are no dice but the target is non-zero, it's an invalid configuration |
| 12 | + if (dice == 0 && target != 0) return 0; |
| 13 | + |
| 14 | + // Base case: If there are dice left but the target is already zero, it's also invalid |
| 15 | + if (target == 0 && dice != 0) return 0; |
| 16 | + |
| 17 | + // Create a 2D DP table where dp[d][t] represents the number of ways to achieve |
| 18 | + // the target `t` using `d` dice |
| 19 | + vector<vector<long long>> dp(dice + 1, vector<long long>(target + 1, 0)); |
| 20 | + |
| 21 | + // Initialize the base case: There is exactly one way to achieve a target of 0 with 0 dice |
| 22 | + dp[0][0] = 1; |
| 23 | + |
| 24 | + // Iterate over the number of dice |
| 25 | + for (int d = 1; d <= dice; d++) { |
| 26 | + // Iterate over the target values |
| 27 | + for (int t = 1; t <= target; t++) { |
| 28 | + long long ans = 0; |
| 29 | + |
| 30 | + // Consider each face value from 1 to `faces` |
| 31 | + for (int f = 1; f <= faces; f++) { |
| 32 | + // If the current target `t` is greater than or equal to the face value `f`, |
| 33 | + // add the number of ways to achieve the remaining target (t-f) with one less die |
| 34 | + if (t - f >= 0) |
| 35 | + ans = (ans + dp[d - 1][t - f]) % MOD; |
| 36 | + } |
| 37 | + |
| 38 | + // Update the DP table for the current number of dice and target |
| 39 | + dp[d][t] = ans; |
| 40 | + } |
| 41 | + } |
| 42 | + |
| 43 | + // Return the number of ways to achieve the target with the given number of dice |
| 44 | + return dp[dice][target]; |
| 45 | + } |
| 46 | + |
| 47 | + // Function to calculate the number of ways to roll `n` dice with `k` faces to achieve `target` |
| 48 | + int numRollsToTarget(int n, int k, int target) { |
| 49 | + // Call the helper function to solve the problem using bottom-up DP |
| 50 | + return solve(n, k, target); |
| 51 | + } |
| 52 | +}; |
0 commit comments