Skip to content

Commit f3fa5c6

Browse files
authored
Create 02 - Top-Down | DP | Approach.cpp
1 parent fd3baab commit f3fa5c6

File tree

1 file changed

+44
-0
lines changed

1 file changed

+44
-0
lines changed
Lines changed: 44 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
class Solution {
2+
public:
3+
// Constant to store the modulo value as the result can be large
4+
static const int MOD = 1e9 + 7;
5+
6+
// Recursive function with memoization to calculate the number of ways
7+
long long solve(int dice, int faces, int target, vector<vector<long long>>& dp) {
8+
// Base case: If the target becomes negative, it's not possible to achieve it
9+
if (target < 0) return 0;
10+
11+
// Base case: If no dice are left but the target is not zero, it's an invalid configuration
12+
if (dice == 0 && target != 0) return 0;
13+
14+
// Base case: If there are dice left but the target is already zero, it's also invalid
15+
if (target == 0 && dice != 0) return 0;
16+
17+
// Base case: If no dice are left and the target is zero, it's a valid way
18+
if (dice == 0 && target == 0) return 1;
19+
20+
// If the current state has already been computed, return the stored result
21+
if (dp[dice][target] != -1) return dp[dice][target];
22+
23+
// Initialize the number of ways for the current state
24+
long long ans = 0;
25+
26+
// Loop through all possible outcomes for a single dice roll
27+
for (int i = 1; i <= faces; i++) {
28+
// Recursively calculate the ways for the remaining dice and updated target
29+
ans = (ans + solve(dice - 1, faces, target - i, dp)) % MOD;
30+
}
31+
32+
// Store the result in the dp table and return it
33+
return dp[dice][target] = ans;
34+
}
35+
36+
// Function to calculate the number of ways to roll `n` dice with `k` faces to achieve `target`
37+
int numRollsToTarget(int n, int k, int target) {
38+
// Create a 2D dp table initialized with -1 to indicate uncomputed states
39+
vector<vector<long long>> dp(n + 1, vector<long long>(target + 1, -1));
40+
41+
// Call the recursive helper function with the initial values
42+
return solve(n, k, target, dp);
43+
}
44+
};

0 commit comments

Comments
 (0)