|
| 1 | +#include <iostream> |
| 2 | +#include <climits> |
| 3 | +#include <set> |
| 4 | +#include <list> |
| 5 | +#include <vector> |
| 6 | +#include <unordered_map> |
| 7 | + |
| 8 | +using namespace std; |
| 9 | + |
| 10 | +// Graph class to represent the graph structure |
| 11 | +class graph { |
| 12 | +public: |
| 13 | + // Adjacency list to store the graph. Each node maps to a list of pairs (neighbor, weight) |
| 14 | + unordered_map<int, list<pair<int, int>>> adjacencyList; |
| 15 | + |
| 16 | + // Function to add an edge between two nodes with a specified weight |
| 17 | + void addEdge(int source, int destination, int weight) { |
| 18 | + // Create pairs representing the edge and its weight |
| 19 | + pair<int, int> u = make_pair(destination, weight); // Edge from source to destination |
| 20 | + pair<int, int> v = make_pair(source, weight); // Edge from destination to source (since the graph is undirected) |
| 21 | + |
| 22 | + // Add the edge to the adjacency list |
| 23 | + adjacencyList[source].push_back(u); |
| 24 | + adjacencyList[destination].push_back(v); |
| 25 | + } |
| 26 | + |
| 27 | + // Function to print the adjacency list representation of the graph |
| 28 | + void printAdjacencyList() { |
| 29 | + for (auto vertex : adjacencyList) { // Loop through each vertex in the adjacency list |
| 30 | + cout << vertex.first << " -> "; // Print the current vertex |
| 31 | + for (auto neighbour : vertex.second) // Loop through its neighbors |
| 32 | + cout << "(" << neighbour.first << ", " << neighbour.second << "), "; // Print neighbor and weight |
| 33 | + cout << endl; |
| 34 | + } |
| 35 | + } |
| 36 | + |
| 37 | + // Function to implement Dijkstra's Algorithm |
| 38 | + void DijkstraAlgorithm(int node, vector<int>& distance, set<pair<int, int>>& Set) { |
| 39 | + // Insert the source node with distance 0 into the set |
| 40 | + Set.insert({0, node}); |
| 41 | + distance[node] = 0; // Initialize the source node's distance to 0 |
| 42 | + |
| 43 | + // Process the set until it is empty |
| 44 | + while (!Set.empty()) { |
| 45 | + // Get the node with the smallest distance (top of the set) |
| 46 | + auto top = *(Set.begin()); |
| 47 | + int nodeDistance = top.first; // Distance of the current node |
| 48 | + int currNode = top.second; // Current node being processed |
| 49 | + |
| 50 | + // Remove the processed node from the set |
| 51 | + Set.erase(Set.begin()); |
| 52 | + |
| 53 | + // Traverse all neighbors of the current node |
| 54 | + for (auto neighbour : adjacencyList[currNode]) { |
| 55 | + int neighborNode = neighbour.first; // Neighbor node |
| 56 | + int edgeWeight = neighbour.second; // Weight of the edge to the neighbor |
| 57 | + |
| 58 | + // Check if a shorter path to the neighbor exists |
| 59 | + if (nodeDistance + edgeWeight < distance[neighborNode]) { |
| 60 | + // If the neighbor is already in the set, remove the old record |
| 61 | + auto record = Set.find({distance[neighborNode], neighborNode}); |
| 62 | + if (record != Set.end()) |
| 63 | + Set.erase(record); |
| 64 | + |
| 65 | + // Update the distance to the neighbor |
| 66 | + distance[neighborNode] = nodeDistance + edgeWeight; |
| 67 | + |
| 68 | + // Insert the updated record into the set |
| 69 | + Set.insert({distance[neighborNode], neighborNode}); |
| 70 | + } |
| 71 | + } |
| 72 | + } |
| 73 | + } |
| 74 | +}; |
| 75 | + |
| 76 | +int main() { |
| 77 | + graph g; // Create a graph object |
| 78 | + |
| 79 | + // Add edges to the graph |
| 80 | + g.addEdge(0, 1, 5); |
| 81 | + g.addEdge(0, 2, 8); |
| 82 | + g.addEdge(1, 2, 9); |
| 83 | + g.addEdge(1, 3, 2); |
| 84 | + g.addEdge(2, 3, 6); |
| 85 | + |
| 86 | + // Print the adjacency list of the graph |
| 87 | + g.printAdjacencyList(); |
| 88 | + |
| 89 | + int n = 4; // Number of nodes in the graph |
| 90 | + vector<int> distance(n, INT_MAX); // Initialize distances to all nodes as infinity (INT_MAX) |
| 91 | + set<pair<int, int>> Set; // Min-heap implemented using a set to store (distance, node) pairs |
| 92 | + |
| 93 | + int src = 0; // Define the source node for Dijkstra's algorithm |
| 94 | + g.DijkstraAlgorithm(src, distance, Set); // Call Dijkstra's algorithm |
| 95 | + |
| 96 | + // Print the shortest distances from the source node to all other nodes |
| 97 | + cout << "Shortest distances from node " << src << ":" << endl; |
| 98 | + for (int i = 0; i < n; i++) { |
| 99 | + cout << "Node " << i << ": "; |
| 100 | + if (distance[i] == INT_MAX) // If the distance is still infinity, the node is unreachable |
| 101 | + cout << "INF" << endl; |
| 102 | + else |
| 103 | + cout << distance[i] << endl; // Print the distance to the node |
| 104 | + } |
| 105 | + |
| 106 | + return 0; |
| 107 | +} |
0 commit comments