Skip to content

Commit 851c8f5

Browse files
committed
update docs
1 parent 7183d89 commit 851c8f5

File tree

1 file changed

+36
-36
lines changed

1 file changed

+36
-36
lines changed

docs/src/quick_start.md

Lines changed: 36 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
- [Supervised classifiers](@ref)
55
- [Transformers](@ref)
66

7-
Refer to the front end [docstrings](@ref front_ends) for options ignored below.
7+
Refer to the front end [docstrings](@ref front_ends) for options ignored below.
88

99
## Supervised regressors
1010

@@ -31,35 +31,35 @@ Your [`LearnAPI.fit`](@ref) implementation will then look like this:
3131

3232
```julia
3333
function LearnAPI.fit(
34-
learner::MyLearner,
35-
observations::Obs;
36-
verbosity=1,
37-
)
38-
X = observations.features # p x n matrix
39-
y = observations.target # n-vector (use `Saffron(multitarget=true)` for matrix)
40-
feature_names = observations.names
34+
learner::MyLearner,
35+
observations::Obs;
36+
verbosity=1,
37+
)
38+
X = observations.features # p x n matrix
39+
y = observations.target # n-vector (use `Saffron(multitarget=true)` for matrix)
40+
feature_names = observations.names
4141

42-
# do stuff with `X`, `y` and `feature_names`:
43-
...
42+
# do stuff with `X`, `y` and `feature_names`:
43+
...
4444

4545
end
4646
LearnAPI.fit(learner::MyLearner, data; kwargs...) =
47-
LearnAPI.fit(learner, LearnAPI.obs(learner, data); kwargs...)
47+
LearnAPI.fit(learner, LearnAPI.obs(learner, data); kwargs...)
4848
```
4949

5050
For each [`KindOfProxy`](@ref) subtype `K` to be supported (e.g., `Point`), your
5151
[`LearnAPI.predict`](@ref) implementation(s) will look like this:
5252

5353
```julia
5454
function LearnAPI.predict(model::MyModel, :K, observations::Obs)
55-
X = observations.features # p x n matrix
56-
names = observations.names # if really needed
55+
X = observations.features # p x n matrix
56+
names = observations.names # if really needed
5757

58-
# do stuff with `X`:
59-
...
58+
# do stuff with `X`:
59+
...
6060
end
6161
LearnAPI.predict(model::MyModel, kind_of_proxy, X) =
62-
LearnAPI.predict(model, kind_of_proxy, obs(model, X))
62+
LearnAPI.predict(model, kind_of_proxy, obs(model, X))
6363
```
6464

6565
## Supervised classifiers
@@ -94,13 +94,13 @@ function LearnAPI.fit(
9494
X = observations.features # p x n matrix
9595
y = observations.target # n-vector
9696
decoder = observations.decoder
97-
classes_seen = observatioins.classes_seen
97+
levels_seen = observations.levels_seen
9898
feature_names = observations.names
9999

100100
# do stuff with `X`, `y` and `feature_names`:
101-
# return a `model` object which also stores the `decoder` and/or `classes_seen`
102-
# to make them available to `predict`.
103-
...
101+
# return a `model` object which also stores the `decoder` and/or `levels_seen`
102+
# to make them available to `predict`.
103+
...
104104
end
105105
LearnAPI.fit(learner::MyLearner, data; kwargs...) =
106106
LearnAPI.fit(learner, LearnAPI.obs(learner, data); kwargs...)
@@ -116,10 +116,10 @@ function LearnAPI.predict(model::MyModel, :K, observations::Obs)
116116

117117
# Do stuff with `X` and `model` to obtain raw `predictions` (a vector of integer
118118
# codes for `K = Point`, or an `n x c` matrix of probabilities for `K = Distribution`).
119-
# Extract `decoder` or `classes_seen` from `model`.
119+
# Extract `decoder` or `levels_seen` from `model`.
120120
# For `K = Point`, return `decoder.(predictions)`.
121121
# For `K = Distribution`, return, say,
122-
# `CategoricalDistributions.Univariate(classes_seen, predictions)`.
122+
# `CategoricalDistributions.Univariate(levels_seen, predictions)`.
123123
...
124124
end
125125
LearnAPI.predict(model::MyModel, kind_of_proxy, X) = LearnAPI.predict(model,
@@ -152,29 +152,29 @@ Your [`LearnAPI.fit`](@ref) implementation will then look like this:
152152

153153
```julia
154154
function LearnAPI.fit(
155-
learner::MyLearner,
156-
observations::Obs;
157-
verbosity=1,
158-
)
159-
x = observations.features # p x n matrix
160-
feature_names = observations.names
161-
162-
# do stuff with `x` and `feature_names`:
163-
...
155+
learner::MyLearner,
156+
observations::Obs;
157+
verbosity=1,
158+
)
159+
x = observations.features # p x n matrix
160+
feature_names = observations.names
161+
162+
# do stuff with `x` and `feature_names`:
163+
...
164164
end
165165
LearnAPI.fit(learner::MyLearner, data; kwargs...) =
166-
LearnAPI.fit(learner, LearnAPI.obs(learner, data); kwargs...)
166+
LearnAPI.fit(learner, LearnAPI.obs(learner, data); kwargs...)
167167
```
168168

169169
Your [`LearnAPI.transform`](@ref) implementation will look like this:
170170

171171
```julia
172172
function LearnAPI.transform(model::MyModel, observations::Obs)
173-
x = observations.features # p x n matrix
174-
feature_names = observations.names # if really needed
173+
x = observations.features # p x n matrix
174+
feature_names = observations.names # if really needed
175175

176-
# do stuff with `x`:
177-
...
176+
# do stuff with `x`:
177+
...
178178
end
179179
LearnAPI.transform(model::MyModel, X) = LearnAPI.transform(model, obs(model, X))
180180
```

0 commit comments

Comments
 (0)