@@ -195,16 +195,16 @@ end
195195
196196 df = DataFrame (X)
197197
198- mf = ModelFrame (
199- @formula (age ~ (name + height + favnum)),
198+ mf = StatsModels . ModelFrame (
199+ StatsModels . @formula (age ~ (name + height + favnum)),
200200 df,
201201 contrasts = Dict (
202202 :name => StatsModels. ContrastsCoding (buildrandomcontrast (nothing , 3 )),
203203 :favnum => StatsModels. ContrastsCoding (buildrandomcontrast (nothing , 4 )),
204204 ),
205205 )
206206
207- X_tr_sm = ModelMatrix (mf). m[:, 2 : end ]
207+ X_tr_sm = StatsModels . ModelMatrix (mf). m[:, 2 : end ]
208208
209209 @test X_tr_mlj == X_tr_sm
210210end
@@ -221,24 +221,24 @@ end
221221 X_tr_mlj = Tables. matrix (X_tr)[:, 1 : end - 1 ]
222222 df = DataFrame (X)
223223
224- mf = ModelFrame (
225- @formula (age ~ (name + height + favnum)),
224+ mf = StatsModels . ModelFrame (
225+ StatsModels . @formula (age ~ (name + height + favnum)),
226226 df,
227227 contrasts = Dict (
228- :name => HypothesisCoding (
228+ :name => StatsModels . HypothesisCoding (
229229 buildrandomhypothesis (nothing , 3 );
230230 levels = levels (X. name),
231231 labels = [],
232232 ),
233- :favnum => HypothesisCoding (
233+ :favnum => StatsModels . HypothesisCoding (
234234 buildrandomhypothesis (nothing , 4 );
235235 levels = levels (X. favnum),
236236 labels = [],
237237 ),
238238 ),
239239 )
240240
241- X_tr_sm = ModelMatrix (mf). m[:, 2 : end ]
241+ X_tr_sm = StatsModels . ModelMatrix (mf). m[:, 2 : end ]
242242
243243 @test X_tr_mlj == X_tr_sm
244244end
@@ -257,11 +257,11 @@ end
257257 for ind in 1 : 6
258258 stats_models (k, ind) = [
259259 StatsModels. ContrastsCoding (buildrandomcontrast (nothing , k)),
260- DummyCoding (; base = (k == 3 ) ? " Mary" : 10 ),
261- EffectsCoding (; base = (k == 3 ) ? " Mary" : 10 ),
262- SeqDiffCoding (),
263- HelmertCoding (),
264- HypothesisCoding (
260+ StatsModels . DummyCoding (; base = (k == 3 ) ? " Mary" : 10 ),
261+ StatsModels . EffectsCoding (; base = (k == 3 ) ? " Mary" : 10 ),
262+ StatsModels . SeqDiffCoding (),
263+ StatsModels . HelmertCoding (),
264+ StatsModels . HypothesisCoding (
265265 buildrandomhypothesis (nothing , k);
266266 levels = (k == 3 ) ? levels (X. name) : levels (X. favnum),
267267 labels = [],
277277
278278 df = DataFrame (X)
279279
280- mf = ModelFrame (
281- @formula (age ~ (name + height + favnum)),
280+ mf = StatsModels . ModelFrame (
281+ StatsModels . @formula (age ~ (name + height + favnum)),
282282 df,
283283 contrasts = Dict (
284284 :name => stats_models (3 , ind),
287287 )
288288
289289 X_tr_mlj = Tables. matrix (X_tr)[:, 1 : end - 1 ]
290- X_tr_sm = ModelMatrix (mf). m[:, 2 : end ]
290+ X_tr_sm = StatsModels . ModelMatrix (mf). m[:, 2 : end ]
291291 @test X_tr_mlj ≈ X_tr_sm
292292 end
293293end
@@ -298,11 +298,11 @@ end
298298 for ind2 in 2 : 5
299299 stats_models (k, ind) = [
300300 StatsModels. ContrastsCoding (buildrandomcontrast (nothing , k)),
301- DummyCoding (; base = (k == 3 ) ? " Mary" : 10 ),
302- EffectsCoding (; base = (k == 3 ) ? " Mary" : 10 ),
303- SeqDiffCoding (),
304- HelmertCoding (),
305- HypothesisCoding (
301+ StatsModels . DummyCoding (; base = (k == 3 ) ? " Mary" : 10 ),
302+ StatsModels . EffectsCoding (; base = (k == 3 ) ? " Mary" : 10 ),
303+ StatsModels . SeqDiffCoding (),
304+ StatsModels . HelmertCoding (),
305+ StatsModels . HypothesisCoding (
306306 buildrandomhypothesis (nothing , k);
307307 levels = (k == 3 ) ? levels (X. name) : levels (X. favnum),
308308 labels = [],
331331
332332 df = DataFrame (X)
333333
334- mf = ModelFrame (
335- @formula (age ~ (name + height + favnum)),
334+ mf = StatsModels . ModelFrame (
335+ StatsModels . @formula (age ~ (name + height + favnum)),
336336 df,
337337 contrasts = Dict (
338338 :name => stats_models (3 , ind1),
341341 )
342342
343343 X_tr_mlj = Tables. matrix (X_tr)[:, 1 : end - 1 ]
344- X_tr_sm = ModelMatrix (mf). m[:, 2 : end ]
344+ X_tr_sm = StatsModels . ModelMatrix (mf). m[:, 2 : end ]
345345
346346 @test X_tr_mlj ≈ X_tr_sm
347347 end
358358 encoder = ContrastEncoder (ignore = true , ordered_factor = false )
359359 mach = machine (encoder, X)
360360 fit! (mach)
361- Xnew_transf = MMI . transform (mach, X)
361+ Xnew_transf = MLJBase . transform (mach, X)
362362
363363 # same output
364364 @test X_transf == Xnew_transf
392392 buildmatrix = matrix_func[i],
393393 )
394394 mach = fit! (machine (encoder, X))
395- Xnew = MMI . transform (mach, X)
395+ Xnew = MLJBase . transform (mach, X)
396396
397397 # Test Consistency with Types
398398 scs = schema (Xnew). scitypes
406406 @test last_type <: Integer && isconcretetype (last_type)
407407 @test last_sctype <: Count
408408 end
409- end
409+ end
0 commit comments