@@ -195,16 +195,16 @@ end
195
195
196
196
df = DataFrame (X)
197
197
198
- mf = ModelFrame (
199
- @formula (age ~ (name + height + favnum)),
198
+ mf = StatsModels . ModelFrame (
199
+ StatsModels . @formula (age ~ (name + height + favnum)),
200
200
df,
201
201
contrasts = Dict (
202
202
:name => StatsModels. ContrastsCoding (buildrandomcontrast (nothing , 3 )),
203
203
:favnum => StatsModels. ContrastsCoding (buildrandomcontrast (nothing , 4 )),
204
204
),
205
205
)
206
206
207
- X_tr_sm = ModelMatrix (mf). m[:, 2 : end ]
207
+ X_tr_sm = StatsModels . ModelMatrix (mf). m[:, 2 : end ]
208
208
209
209
@test X_tr_mlj == X_tr_sm
210
210
end
@@ -221,24 +221,24 @@ end
221
221
X_tr_mlj = Tables. matrix (X_tr)[:, 1 : end - 1 ]
222
222
df = DataFrame (X)
223
223
224
- mf = ModelFrame (
225
- @formula (age ~ (name + height + favnum)),
224
+ mf = StatsModels . ModelFrame (
225
+ StatsModels . @formula (age ~ (name + height + favnum)),
226
226
df,
227
227
contrasts = Dict (
228
- :name => HypothesisCoding (
228
+ :name => StatsModels . HypothesisCoding (
229
229
buildrandomhypothesis (nothing , 3 );
230
230
levels = levels (X. name),
231
231
labels = [],
232
232
),
233
- :favnum => HypothesisCoding (
233
+ :favnum => StatsModels . HypothesisCoding (
234
234
buildrandomhypothesis (nothing , 4 );
235
235
levels = levels (X. favnum),
236
236
labels = [],
237
237
),
238
238
),
239
239
)
240
240
241
- X_tr_sm = ModelMatrix (mf). m[:, 2 : end ]
241
+ X_tr_sm = StatsModels . ModelMatrix (mf). m[:, 2 : end ]
242
242
243
243
@test X_tr_mlj == X_tr_sm
244
244
end
@@ -257,11 +257,11 @@ end
257
257
for ind in 1 : 6
258
258
stats_models (k, ind) = [
259
259
StatsModels. ContrastsCoding (buildrandomcontrast (nothing , k)),
260
- DummyCoding (; base = (k == 3 ) ? " Mary" : 10 ),
261
- EffectsCoding (; base = (k == 3 ) ? " Mary" : 10 ),
262
- SeqDiffCoding (),
263
- HelmertCoding (),
264
- HypothesisCoding (
260
+ StatsModels . DummyCoding (; base = (k == 3 ) ? " Mary" : 10 ),
261
+ StatsModels . EffectsCoding (; base = (k == 3 ) ? " Mary" : 10 ),
262
+ StatsModels . SeqDiffCoding (),
263
+ StatsModels . HelmertCoding (),
264
+ StatsModels . HypothesisCoding (
265
265
buildrandomhypothesis (nothing , k);
266
266
levels = (k == 3 ) ? levels (X. name) : levels (X. favnum),
267
267
labels = [],
277
277
278
278
df = DataFrame (X)
279
279
280
- mf = ModelFrame (
281
- @formula (age ~ (name + height + favnum)),
280
+ mf = StatsModels . ModelFrame (
281
+ StatsModels . @formula (age ~ (name + height + favnum)),
282
282
df,
283
283
contrasts = Dict (
284
284
:name => stats_models (3 , ind),
287
287
)
288
288
289
289
X_tr_mlj = Tables. matrix (X_tr)[:, 1 : end - 1 ]
290
- X_tr_sm = ModelMatrix (mf). m[:, 2 : end ]
290
+ X_tr_sm = StatsModels . ModelMatrix (mf). m[:, 2 : end ]
291
291
@test X_tr_mlj ≈ X_tr_sm
292
292
end
293
293
end
@@ -298,11 +298,11 @@ end
298
298
for ind2 in 2 : 5
299
299
stats_models (k, ind) = [
300
300
StatsModels. ContrastsCoding (buildrandomcontrast (nothing , k)),
301
- DummyCoding (; base = (k == 3 ) ? " Mary" : 10 ),
302
- EffectsCoding (; base = (k == 3 ) ? " Mary" : 10 ),
303
- SeqDiffCoding (),
304
- HelmertCoding (),
305
- HypothesisCoding (
301
+ StatsModels . DummyCoding (; base = (k == 3 ) ? " Mary" : 10 ),
302
+ StatsModels . EffectsCoding (; base = (k == 3 ) ? " Mary" : 10 ),
303
+ StatsModels . SeqDiffCoding (),
304
+ StatsModels . HelmertCoding (),
305
+ StatsModels . HypothesisCoding (
306
306
buildrandomhypothesis (nothing , k);
307
307
levels = (k == 3 ) ? levels (X. name) : levels (X. favnum),
308
308
labels = [],
331
331
332
332
df = DataFrame (X)
333
333
334
- mf = ModelFrame (
335
- @formula (age ~ (name + height + favnum)),
334
+ mf = StatsModels . ModelFrame (
335
+ StatsModels . @formula (age ~ (name + height + favnum)),
336
336
df,
337
337
contrasts = Dict (
338
338
:name => stats_models (3 , ind1),
341
341
)
342
342
343
343
X_tr_mlj = Tables. matrix (X_tr)[:, 1 : end - 1 ]
344
- X_tr_sm = ModelMatrix (mf). m[:, 2 : end ]
344
+ X_tr_sm = StatsModels . ModelMatrix (mf). m[:, 2 : end ]
345
345
346
346
@test X_tr_mlj ≈ X_tr_sm
347
347
end
358
358
encoder = ContrastEncoder (ignore = true , ordered_factor = false )
359
359
mach = machine (encoder, X)
360
360
fit! (mach)
361
- Xnew_transf = MMI . transform (mach, X)
361
+ Xnew_transf = MLJBase . transform (mach, X)
362
362
363
363
# same output
364
364
@test X_transf == Xnew_transf
392
392
buildmatrix = matrix_func[i],
393
393
)
394
394
mach = fit! (machine (encoder, X))
395
- Xnew = MMI . transform (mach, X)
395
+ Xnew = MLJBase . transform (mach, X)
396
396
397
397
# Test Consistency with Types
398
398
scs = schema (Xnew). scitypes
406
406
@test last_type <: Integer && isconcretetype (last_type)
407
407
@test last_sctype <: Count
408
408
end
409
- end
409
+ end
0 commit comments