Skip to content

Commit c68fceb

Browse files
one more \quad
1 parent ddad8ff commit c68fceb

File tree

2 files changed

+3
-5
lines changed

2 files changed

+3
-5
lines changed

examples/disk.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
# We analyze the function on an $N\times M$ tensor product grid defined by:
99
# ```math
1010
# \begin{aligned}
11-
# r_n & = \cos\left[(n+\tfrac{1}{2})\pi/2N\right],\quad{\rm for} 0\le n < N,\quad{\rm and}\\
11+
# r_n & = \cos\left[(n+\tfrac{1}{2})\pi/2N\right],\quad{\rm for}\quad 0\le n < N,\quad{\rm and}\\
1212
# \theta_m & = 2\pi m/M,\quad{\rm for}\quad 0\le m < M;
1313
# \end{aligned}
1414
# ```

examples/padua.jl

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -8,13 +8,11 @@ using FastTransforms
88
N = 15
99
pts = paduapoints(N)
1010
x = pts[:,1]
11-
y = pts[:,2]
12-
nothing #hide
11+
y = pts[:,2];
1312

1413
# We take the Padua transform of the function:
1514
f = (x,y) -> exp(x + cos(y))
16-
= paduatransform(f.(x , y))
17-
nothing #hide
15+
= paduatransform(f.(x , y));
1816

1917
# and use the coefficients to create an approximation to the function $f$:
2018
= (x,y) -> begin

0 commit comments

Comments
 (0)