@@ -35,6 +35,8 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
35
35
36
36
@test (L * R)[Block .(1 : N), Block .(1 : N)] ≈ (I - X^ 2 - Y^ 2 )[Block .(1 : N), Block .(1 : N)]
37
37
38
+ @test (DunklXuDisk () \ WeightedDunklXuDisk (1.0 ))[Block .(1 : N), Block .(1 : N)] ≈ (WeightedDunklXuDisk (0.0 ) \ WeightedDunklXuDisk (1.0 ))[Block .(1 : N), Block .(1 : N)]
39
+
38
40
∂x = PartialDerivative {1} (axes (P, 1 ))
39
41
∂y = PartialDerivative {2} (axes (P, 1 ))
40
42
@@ -58,13 +60,15 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
58
60
59
61
∂θ = AngularMomentum (axes (P, 1 ))
60
62
@test axes (∂θ) == (axes (P, 1 ), axes (P, 1 ))
61
- @test ∂θ == AngularMomentum (axes (Q, 1 ))
63
+ @test ∂θ == AngularMomentum (axes (Q, 1 )) == AngularMomentum ( axes (P, 1 ) . domain)
62
64
@test copy (∂θ) ≡ ∂θ
63
65
64
66
A = P \ (∂θ * P)
65
67
66
68
@test A[Block .(1 : N), Block .(1 : N)] ≈ C
67
- @test (A^ 2 )[Block .(1 : N), Block .(1 : N)] ≈ A[Block .(1 : N), Block .(1 : N)]^ 2
69
+
70
+ A2 = P \ (∂θ^ 2 * P)
71
+ @test A2[Block .(1 : N), Block .(1 : N)] ≈ (A^ 2 )[Block .(1 : N), Block .(1 : N)] ≈ A[Block .(1 : N), Block .(1 : N)]^ 2
68
72
69
73
∂x = PartialDerivative {1} (axes (WQ, 1 ))
70
74
∂y = PartialDerivative {2} (axes (WQ, 1 ))
0 commit comments