|
1 |
| -using ApproxFun, MultivariateOrthogonalPolynomials |
2 |
| -import ApproxFun: Vec, PiecewiseSegment, ZeroOperator |
| 1 | +using ApproxFun, MultivariateOrthogonalPolynomials, Plots, SparseArrays |
| 2 | +import ApproxFun: Vec, PiecewiseSegment, ZeroOperator, Block |
3 | 3 | import MultivariateOrthogonalPolynomials: DirichletTriangle
|
4 | 4 |
|
5 |
| -d = [Triangle(Vec(0,0), Vec(1,0), Vec(0,1)) , Triangle(Vec(1,1),Vec(1,0),Vec(0,1)) , |
6 |
| - Triangle(Vec(1,1),Vec(0,1),Vec(0,2)) , Triangle(Vec(1,2),Vec(0,2),Vec(1,1)) , |
| 5 | +d = [Triangle(Vec(1,1),Vec(0,1),Vec(0,2)) , Triangle(Vec(1,2),Vec(0,2),Vec(1,1)), |
| 6 | + Triangle(Vec(0,0), Vec(1,0), Vec(0,1)) , Triangle(Vec(1,1),Vec(1,0),Vec(0,1)) , |
7 | 7 | Triangle(Vec(1,0), Vec(2,0), Vec(1,1)) , Triangle(Vec(2,1), Vec(1,1), Vec(2,0))]
|
8 | 8 |
|
9 |
| -∂d = components(PiecewiseSegment([Vec(0,0), Vec(1,0), Vec(2,0), Vec(2,1), Vec(1,1), Vec(1,2), Vec(0,2), Vec(0,1), Vec(0,0)])) |
10 |
| -ιd = [Segment(Vec(0,1),Vec(1,0)), Segment(Vec(0,1), Vec(1,1)), Segment(Vec(1,1), Vec(2,0)), |
11 |
| - Segment(Vec(1,0), Vec(1,1)), Segment(Vec(0,2), Vec(1,1))] |
12 | 9 |
|
13 |
| -length(∂d) |
| 10 | +p = plot() |
| 11 | + for ▴ in d |
| 12 | + plot!(▴) |
| 13 | + end |
| 14 | + p |
| 15 | + |
| 16 | +∂d = components(PiecewiseSegment([Vec(0,2), Vec(0,1), Vec(0,0), Vec(1,0), Vec(2,0), Vec(2,1), Vec(1,1), Vec(1,2), Vec(0,2)])) |
| 17 | + |
| 18 | +for s in ∂d |
| 19 | + plot!(s) |
| 20 | +end |
| 21 | +p |
| 22 | + |
| 23 | +# ιd = [Segment(Vec(0,2), Vec(1,1)), Segment(Vec(0,1), Vec(1,1)), |
| 24 | +# Segment(Vec(0,1),Vec(1,0)), Segment(Vec(1,0), Vec(1,1)), |
| 25 | +# Segment(Vec(1,1), Vec(2,0))] |
| 26 | + |
| 27 | + |
| 28 | +# interfaces |
| 29 | +ιd = Dict{NTuple{2,Int}, Segment{Vec{2,Int}}}() |
| 30 | + ιd[(1,2)] = Segment(Vec(0,2), Vec(1,1)) |
| 31 | + ιd[(1,4)] = Segment(Vec(0,1), Vec(1,1)) |
| 32 | + ιd[(3,4)] = Segment(Vec(0,1),Vec(1,0)) |
| 33 | + ιd[(4,5)] = Segment(Vec(1,0), Vec(1,1)) |
| 34 | + ιd[(5,6)] = Segment(Vec(1,1), Vec(2,0)) |
| 35 | + |
| 36 | + |
| 37 | +keys(ιd) |
| 38 | + |
14 | 39 |
|
15 | 40 | ds = vcat(fill.(DirichletTriangle{1,1,1}.(d),3)...) # repeat each triangle 3 times
|
16 |
| -rs = [Legendre.(∂d); fill.(Legendre.(ιd),2)...; fill.(JacobiTriangle.(d),3)...] |
| 41 | +rs = [Legendre.(∂d)..., |
| 42 | + Legendre(ιd[1,4]), Legendre(ιd[4,5]), # straight interface |
| 43 | + Legendre(ιd[1,2]), Legendre(ιd[3,4]), Legendre(ιd[5,6]), |
| 44 | + Legendre(ιd[1,4]), Legendre(ιd[4,5]), # straight interface |
| 45 | + Legendre(ιd[1,2]), Legendre(ιd[3,4]), Legendre(ιd[5,6]), |
| 46 | + vcat(fill.(JacobiTriangle.(d),3)...)...] # diagonal interface |
| 47 | + |
| 48 | + |
| 49 | + |
| 50 | +# rs = [Legendre.(∂d); fill.(Legendre.(values(ιd)),2)...; fill.(JacobiTriangle.(d),3)...] |
| 51 | + |
| 52 | +ui = T -> 1 + (T-1)*3 |
| 53 | +ux = T -> 2 + (T-1)*3 |
| 54 | +uy = T -> 3 + (T-1)*3 |
| 55 | + |
| 56 | +Dx = Derivative([1,0]) |
| 57 | +Dy = Derivative([0,1]) |
| 58 | + |
| 59 | +N = 100 |
| 60 | +sprs = A -> (global N; sparse(A[Block.(1:N), Block.(1:N)])) |
| 61 | + |
| 62 | +A = Matrix{SparseMatrixCSC{Float64,Int}}(undef, length(rs), length(ds)) |
| 63 | + for K=1:length(rs), J=1:length(ds) # fill with zeros |
| 64 | + A[K,J] = ZeroOperator(ds[J],rs[K]) |> sprs |
| 65 | + end |
| 66 | + # add boundary conditions |
| 67 | + K = 0; |
| 68 | + K +=1; T = 1; J = ui(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 69 | + K +=1; T = 3; J = ui(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 70 | + K +=1; T = 3; J = ui(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 71 | + K +=1; T = 5; J = ui(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 72 | + K +=1; T = 6; J = ui(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 73 | + K +=1; T = 6; J = ui(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 74 | + K +=1; T = 2; J = ui(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 75 | + K +=1; T = 2; J = ui(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 76 | + # add dirichlet interface conditions |
| 77 | + for (T1,T2) in ((1,4), (4,5), (1,2), (3,4), (5,6)) |
| 78 | + global K +=1; |
| 79 | + J = ui(T1); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 80 | + J = ui(T2); A[K,J] = -(I : ds[J] → rs[K]) |> sprs |
| 81 | + end |
| 82 | + # add lr neumann |
| 83 | + K +=1; |
| 84 | + T = 1; J = uy(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 85 | + T = 4; J = uy(T); A[K,J] = -(I : ds[J] → rs[K]) |> sprs |
| 86 | + # add ud neumann |
| 87 | + K +=1; |
| 88 | + T = 4; J = ux(T); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 89 | + T = 5; J = ux(T); A[K,J] = -(I : ds[J] → rs[K]) |> sprs |
| 90 | + # add diagonal neumann |
| 91 | + for (T1,T2) in ((1,2), (3,4), (5,6)) |
| 92 | + global K +=1; |
| 93 | + J = ux(T1); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 94 | + J = uy(T1); A[K,J] = (I : ds[J] → rs[K]) |> sprs |
| 95 | + J = ux(T2); A[K,J] = -(I : ds[J] → rs[K]) |> sprs |
| 96 | + J = uy(T2); A[K,J] = -(I : ds[J] → rs[K]) |> sprs |
| 97 | + end |
| 98 | + |
| 99 | + for T in 1:length(d) |
| 100 | + @show K,T |
| 101 | + global K +=1; |
| 102 | + J = ui(T); A[K,J] = (Dx : ds[J] → rs[K]) |> sprs |
| 103 | + J = ux(T); A[K,J] = -(I : ds[J] → rs[K]) |> sprs |
| 104 | + global K +=1; |
| 105 | + J = ui(T); A[K,J] = (Dy : ds[J] → rs[K]) |> sprs |
| 106 | + J = uy(T); A[K,J] = -(I : ds[J] → rs[K]) |> sprs |
| 107 | + global K +=1; |
| 108 | + J = ux(T); A[K,J] = (Dx : ds[J] → rs[K]) |> sprs |
| 109 | + J = uy(T); A[K,J] = (Dy : ds[J] → rs[K]) |> sprs |
| 110 | + end |
| 111 | + |
| 112 | +M = hvcat(ntuple(_ -> size(A,2),size(A,1)), permutedims(A)...) |
| 113 | + |
| 114 | + |
| 115 | +rhs = vcat(coefficients.(Fun.(Ref((x,y) -> real(exp(x+im*y))), rs[1:length(∂d)], N))...) |
| 116 | + |
| 117 | +rhs = vcat(coefficients.(Fun.(Ref((x,y) -> x^2), rs[1:length(∂d)], N))...) |
| 118 | + |
| 119 | + |
| 120 | +F = factorize(M) |
| 121 | +u_cfs = F \ pad(rhs, size(M,1)) |
| 122 | + |
| 123 | +u1 = Fun(ds[4], u_cfs[(4-1)*sum(1:N)+1:4*sum(1:N)]) |
| 124 | +u1(0.99,0.99) |
| 125 | + |
| 126 | +u1.coefficients |
| 127 | +u1(0.1,1.2)-real(exp(0.1+im*1.2)) |
| 128 | + |
| 129 | +plot(abs.([norm((M*u_cfs - pad(rhs, size(M,1)))[N*(K-1)+1:N*K]) for K=1:length(rs)] ); yscale=:log10) |
| 130 | + |
| 131 | +length(rs) |
| 132 | +K = 30; norm((M*u_cfs - pad(rhs, size(M,1)))[N*(K-1)+1:N*K]) |
| 133 | + |
| 134 | + |
| 135 | +U = Fun.(Ref((x,y) -> real(exp(x+im*y))), d, sum(1:N)) |
| 136 | + |
| 137 | + |
| 138 | +u_cfs = Vector{Float64}() |
| 139 | + for T in d |
| 140 | + append!(u_cfs, pad(Fun((x,y) -> exp(x)*cos(y), DirichletTriangle{1,1,1}(T)).coefficients, sum(1:N))) |
| 141 | + append!(u_cfs, pad(Fun((x,y) -> exp(x)*cos(y), DirichletTriangle{1,1,1}(T)).coefficients, sum(1:N))) |
| 142 | + append!(u_cfs, pad(Fun((x,y) -> -exp(x)*sin(y), DirichletTriangle{1,1,1}(T)).coefficients, sum(1:N))) |
| 143 | + end |
| 144 | + |
| 145 | +u_cfs |
| 146 | + |
| 147 | +((M*u_cfs) - pad(rhs, size(M,1))) |> norm |
| 148 | +((M*u_cfs) - pad(rhs, size(M,1)))[1:(N*(length(rs)-6*3))] |> norm |
| 149 | +NN = (N*(length(rs)-6*3)) |
| 150 | +((M*u_cfs) - pad(rhs, size(M,1)))[NN+1:NN+sum(1:N)] |> norm |
| 151 | +((M*u_cfs) - pad(rhs, size(M,1)))[NN+sum(1:N):NN+2sum(1:N)] |> norm |
| 152 | + |
| 153 | + |
| 154 | +T = d[1] |
| 155 | +u1 = pad(Fun((x,y) -> exp(x)*cos(y), DirichletTriangle{1,1,1}(T)).coefficients, sum(1:N)) |
| 156 | +u1y = pad(Fun((x,y) -> -exp(x)*sin(y), DirichletTriangle{1,1,1}(T)).coefficients, sum(1:N)) |
| 157 | + |
| 158 | + |
| 159 | + |
| 160 | +A[19,1]*u1 + A[19,3]*u1y |
| 161 | + |
| 162 | +NN |
| 163 | + |
| 164 | + |
| 165 | +size(M) |
| 166 | +size(u_cfs) |
| 167 | +size(rhs) |
| 168 | + |
| 169 | +M*u_cfs - pad(rhs,size(M,1)) |> norm |
| 170 | + |
| 171 | +(Dy*u1)(0.1,1.2) |
| 172 | + |
| 173 | +Fun((x,y) -> -exp(x)*sin(y), DirichletTriangle{1,1,1}(T))(0.1,1.2) |
| 174 | + |
| 175 | + |
| 176 | + |
| 177 | + |
| 178 | + |
| 179 | +A[18,1]*u_cfs[1:sum(1:N)] + |
| 180 | + A[18,2]*u_cfs[sum(1:N)+1:2sum(1:N)] |
| 181 | +å |
| 182 | +(length(rs)-6*3) |
| 183 | + |
| 184 | +length(rs) |
| 185 | + |
| 186 | +6* |
| 187 | + |
| 188 | + |
| 189 | + |
| 190 | +(I : ds[1] → rs[1])[Block.(1:N), Block.(1:N)] * u_cfs[1:210] |
| 191 | + |
| 192 | + |
17 | 193 |
|
18 | 194 |
|
| 195 | + |
| 196 | + |
| 197 | + |
| 198 | + |
| 199 | + |
| 200 | + |
| 201 | + |
| 202 | + |
| 203 | + |
| 204 | + |
| 205 | +M[1:20,1:210]u_cfs[1:210] |
| 206 | + |
| 207 | +Matrix(M[1:20,211:end]) |> norm |
| 208 | + |
| 209 | +A[1,:] |
| 210 | + |
| 211 | + |
| 212 | + |
| 213 | + |
| 214 | + |
| 215 | + |
| 216 | + |
| 217 | + |
| 218 | + |
| 219 | + |
| 220 | + |
| 221 | + |
| 222 | + |
| 223 | + |
| 224 | + |
| 225 | + |
| 226 | + |
| 227 | +u1.coefficients |
| 228 | + |
| 229 | + |
| 230 | +## Interlace operator |
| 231 | + |
| 232 | + |
| 233 | + |
| 234 | +M |
| 235 | + |
19 | 236 | N,M = length(rs), length(ds)
|
20 | 237 | A = Matrix{Operator{Float64}}(undef, N,M)
|
21 | 238 | for K=1:N, J=1:M # fill with zeros
|
22 | 239 | A[K,J] = ZeroOperator(ds[J],rs[K])
|
23 | 240 | end
|
24 | 241 | # add boundary conditions
|
25 |
| - for K = 1:length(∂d) |
26 |
| - for J = 1:length(d) |
27 |
| - if |
28 |
| - A[K,J] = I : ds[J] → rs[K] |
| 242 | + K = 0; |
| 243 | + K +=1; T = 1; J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 244 | + K +=1; T = 3; J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 245 | + K +=1; T = 3; J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 246 | + K +=1; T = 5; J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 247 | + K +=1; T = 6; J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 248 | + K +=1; T = 6; J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 249 | + K +=1; T = 2; J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 250 | + K +=1; T = 2; J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 251 | + # add dirichlet interface conditions |
| 252 | + for (T1,T2) in ((1,4), (4,5), (1,2), (3,4), (5,6)) |
| 253 | + global K +=1; |
| 254 | + J = ui(T1); A[K,J] = I : ds[J] → rs[K] |
| 255 | + J = ui(T2); A[K,J] = -I : ds[J] → rs[K] |
29 | 256 | end
|
| 257 | + # add lr neumann |
| 258 | + K +=1; |
| 259 | + T = 1; J = uy(T); A[K,J] = I : ds[J] → rs[K] |
| 260 | + T = 4; J = uy(T); A[K,J] = -I : ds[J] → rs[K] |
| 261 | + # add up neumann |
| 262 | + K +=1; |
| 263 | + T = 4; J = ux(T); A[K,J] = I : ds[J] → rs[K] |
| 264 | + T = 5; J = ux(T); A[K,J] = -I : ds[J] → rs[K] |
| 265 | + # add diagonal neumann |
| 266 | + for (T1,T2) in ((1,2), (3,4), (5,6)) |
| 267 | + global K +=1; |
| 268 | + J = ux(T1); A[K,J] = I : ds[J] → rs[K] |
| 269 | + J = uy(T1); A[K,J] = I : ds[J] → rs[K] |
| 270 | + J = ux(T2); A[K,J] = -I : ds[J] → rs[K] |
| 271 | + J = uy(T2); A[K,J] = -I : ds[J] → rs[K] |
| 272 | + end |
| 273 | + |
| 274 | + for T in 1:length(d) |
| 275 | + global K +=1; |
| 276 | + J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 277 | + J = ux(T); A[K,J] = -Dx : ds[J] → rs[K] |
| 278 | + global K +=1; |
| 279 | + J = ui(T); A[K,J] = I : ds[J] → rs[K] |
| 280 | + J = uy(T); A[K,J] = -Dy : ds[J] → rs[K] |
| 281 | + global K +=1; |
| 282 | + J = ux(T); A[K,J] = Dx : ds[J] → rs[K] |
| 283 | + J = uy(T); A[K,J] = Dy : ds[J] → rs[K] |
| 284 | + end |
| 285 | + |
| 286 | +L = Operator(A) |
| 287 | + |
| 288 | +N = 20 |
| 289 | +M = sparse(L[Block.(1:N), Block.(1:N)]) |
| 290 | + |
| 291 | +rhs = Fun.(Ref((x,y) -> real(exp(x+im*y))), rs[1:length(∂d)], N) |
| 292 | + |
| 293 | +u_cfs = M \ pad(vcat(cfs...), size(M,1)) |
| 294 | + |
| 295 | +u_cfs[1:sum(1:N)] |
| 296 | + |
| 297 | +Fun(rhs) |
| 298 | + |
| 299 | +rangespace(L) |
| 300 | + |
| 301 | + |
| 302 | +J |
| 303 | +ds[7] |
| 304 | + |
| 305 | +[randn(2,2) randn(2,2); |
| 306 | + randn(2,2) randn(2,2)] |
| 307 | + |
| 308 | + |
| 309 | +U = Fun.(Ref((x,y) -> real(exp(x+im*y))), d, sum(1:N)) |
| 310 | + u_cfs = Vector{Float64}() |
| 311 | + for u in U |
| 312 | + append!(u_cfs, u.coefficients) |
| 313 | + append!(u_cfs, (Dx*u).coefficients) |
| 314 | + append!(u_cfs, (Dy*u).coefficients) |
| 315 | + end |
| 316 | + |
| 317 | +M*u_cfs |
| 318 | +ds[1] |
| 319 | +rs[1] |
| 320 | + |
| 321 | + |
| 322 | +(I : ds[1] → rs[1])*U[1] |
| 323 | + |
| 324 | +# add boundary conditions |
| 325 | +for K = 1:length(∂d) |
| 326 | + for J = 1:length(d) |
| 327 | + if domain(rs[K]) ⊆ domain(ds[J]) |
| 328 | + A[K,J] = I : ds[J] → rs[K] |
| 329 | + break |
| 330 | + end |
| 331 | + end |
| 332 | +end |
| 333 | + |
| 334 | +Ñ = length(∂d) |
| 335 | +for (K, J1, J2) in ((Ñ+1, 1, 4), |
| 336 | + (Ñ+2, 1, 2)) |
| 337 | + A[K,J1] = I : ds[J1] → rs[K] |
| 338 | + A[K,J2] = -I : ds[J2] → rs[K] |
| 339 | +end |
| 340 | + |
| 341 | +Operator(A)[1:20,1:20] |
| 342 | + |
| 343 | +rs |
| 344 | + |
| 345 | + |
| 346 | +# add continuity |
| 347 | +for K = 1:length(ιd) |
| 348 | + |
30 | 349 |
|
31 | 350 |
|
32 | 351 | ∂d[1] ⊆ d[1]
|
|
0 commit comments