Skip to content

Jp/zernike partials #150

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 38 additions & 1 deletion src/disk.jl
Original file line number Diff line number Diff line change
Expand Up @@ -368,8 +368,45 @@ normal_jacobi(a::T,b::T,n::Int) where T = sqrt(2^(a+b+1) / (2n + a + b + 1) * ga
d2 = d1 .* iseven.(n .- k)
d3 = d1 - d2


A = BlockBandedMatrices._BandedBlockBandedMatrix(BlockBroadcastArray(hcat, c3, Zeros((axes(n,1),)), c2)', axes(n,1), (1,-1), (2,0))
B = BlockBandedMatrices._BandedBlockBandedMatrix(BlockBroadcastArray(hcat, d3, Zeros((axes(n,1),)), d2)', axes(n,1), (1,-1), (0,2))
Zernike{T}(0) * (A + B)
end

@simplify function *(∂ʸ::PartialDerivative{2}, Z::Zernike)
@assert Z.a == 0
T = eltype(eltype(Z))
b = convert(T, Z.b)

k = mortar(Base.OneTo.(oneto(∞))) # k counts the the angular mode (+1)
n = mortar(Fill.(oneto(∞),oneto(∞))) .- 1 # n counts the block number which corresponds to the order
m = k .- isodd.(k).*iseven.(n) .- iseven.(k).*isodd.(n)

x=axes(Jacobi(0,0),1)
D = BroadcastVector(P->Derivative(x) * P, HalfWeighted{:b}.(Normalized.(Jacobi.(b,1:∞))))
Ds = BroadcastVector{AbstractMatrix{Float64}}((P,D) -> P \ D, HalfWeighted{:b}.(Normalized.(Jacobi.(b+1,0:∞))) , D)
M = ModalInterlace(Ds, (ℵ₀,ℵ₀), (0,0))
db = ones(axes(n)) .* (view(view(M, 1:∞, 1:∞),band(0)))

D = BroadcastVector(P->Derivative(x) * P, Normalized.(Jacobi.(b,-1:∞)))
Ds = BroadcastVector{AbstractMatrix{Float64}}((P,D) -> P \ D, Normalized.(Jacobi.(b+1,0:∞)), D)
Dss = BroadcastVector{AbstractMatrix{Float64}}(P -> Diagonal(view(P, band(1))), Ds)
M = ModalInterlace(Dss, (ℵ₀,ℵ₀), (0,0))
# d = ones(axes(n)) .* view(Vcat(0,view(view(M, 1:∞, 1:∞),band(0))),1:∞)
d = ones(axes(n)) .* view(view(M, 1:∞, 1:∞),band(0))

c1 = d .* (-1).^(isodd.(k.-n)) .* (isone.(m) .* sqrt(T(2)) + (1 .- isone.(m)))
c2 = c1 .* iseven.(n .- k)
c3 = c1 - c2


d1 = db .* (-1).^(iseven.(k.-n)) .* (iszero.(m) * sqrt(T(2)) + (1 .- iszero.(m)))
d2 = d1 .* iseven.(n .- k)
d3 = d1 - d2


A = BlockBandedMatrices._BandedBlockBandedMatrix(BlockBroadcastArray(hcat, c3, Zeros((axes(n,1),)), c2)', axes(n,1), (1,-1), (0,2))
B = BlockBandedMatrices._BandedBlockBandedMatrix(BlockBroadcastArray(hcat, d3, Zeros((axes(n,1),)), d2)', axes(n,1), (1,-1), (2,0))

Zernike{T}(Z.b+1) * (A+B)'
end
26 changes: 20 additions & 6 deletions test/test_disk.jl
Original file line number Diff line number Diff line change
Expand Up @@ -320,20 +320,34 @@ import ForwardDiff: hessian
@test all(rep[1].args .≈ (first.(g),last.(g),u[g]))
end

@testset "weighted partial derivatives" begin
@testset "partial derivatives" begin
W = Weighted(Zernike(1))
Z = Zernike(0)
Z⁰ = Zernike(0)
Z¹ = Zernike(1)
Z² = Zernike(2)

𝐱 = axes(W,1)
# ∂ˣ = PartialDerivative{1}(𝐱)
∂ʸ = PartialDerivative{2}(𝐱)

∂Y = Z \ (∂ʸ * W)
∂Y⁰ = Z⁰ \ (∂ʸ * W)
∂Y¹ = Z¹ \ (∂ʸ * Z⁰)
∂Y² = Z² \ (∂ʸ * Z¹)

B = Block.(1:10); xy = SVector(0.2,0.3)

for (i,n,m) in zip((1,2,3,4,5,6,14,17), (0,1,1,2,2,2,4,5), (0,-1,1,0,-2,2,-4,1))
g = 𝐱 -> ForwardDiff.gradient(𝐱 -> (1-norm(𝐱)^2)*zernikez(n, m, 1, 𝐱), 𝐱)[2]
c = ModalTrav(transform(Z, g)[B])[B]
@test Z[xy,B]'*∂Y[B,i] ≈ Z[xy, B]' * c
g⁰ = 𝐱 -> ForwardDiff.gradient(𝐱 -> (1-norm(𝐱)^2)*zernikez(n, m, 1, 𝐱), 𝐱)[2]
c⁰ = ModalTrav(transform(Z⁰, g⁰)[B])[B]
@test Z⁰[xy,B]'*∂Y⁰[B,i] ≈ Z⁰[xy, B]' * c⁰

g¹ = 𝐱 -> ForwardDiff.gradient(𝐱 -> zernikez(n, m, 0, 𝐱), 𝐱)[2]
c¹ = ModalTrav(transform(Z¹, g¹)[B])[B]
@test Z¹[xy,B]'*∂Y¹[B,i] ≈ Z¹[xy, B]' * c¹

g² = 𝐱 -> ForwardDiff.gradient(𝐱 -> zernikez(n, m, 1, 𝐱), 𝐱)[2]
c² = ModalTrav(transform(Z², g²)[B])[B]
@test Z²[xy,B]'*∂Y²[B,i] ≈ Z²[xy, B]' * c²
end

end
Expand Down