Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 16 additions & 9 deletions src/Argmax/Argmax.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,13 @@ Basic benchmark problem with an argmax as the CO algorithm.
# Fields
$TYPEDFIELDS
"""
struct ArgmaxBenchmark <: AbstractBenchmark
struct ArgmaxBenchmark{E} <: AbstractBenchmark
"instances dimension, total number of classes"
instance_dim::Int
"number of features"
nb_features::Int
"true mapping between features and costs"
encoder::E
end

function Base.show(io::IO, bench::ArgmaxBenchmark)
Expand All @@ -27,8 +29,15 @@ function Base.show(io::IO, bench::ArgmaxBenchmark)
)
end

function ArgmaxBenchmark(; instance_dim::Int=10, nb_features::Int=5)
return ArgmaxBenchmark(instance_dim, nb_features)
"""
$TYPEDSIGNATURES

Custom constructor for [`ArgmaxBenchmark`](@ref).
"""
function ArgmaxBenchmark(; instance_dim::Int=10, nb_features::Int=5, seed=nothing)
Random.seed!(seed)
model = Chain(Dense(nb_features => 1; bias=false), vec)
return ArgmaxBenchmark(instance_dim, nb_features, model)
end

"""
Expand Down Expand Up @@ -59,12 +68,10 @@ Generate a dataset of labeled instances for the argmax problem.
function Utils.generate_dataset(
bench::ArgmaxBenchmark, dataset_size::Int=10; seed::Int=0, noise_std=0.0
)
(; instance_dim, nb_features) = bench
(; instance_dim, nb_features, encoder) = bench
rng = MersenneTwister(seed)
features = [randn(rng, Float32, nb_features, instance_dim) for _ in 1:dataset_size]
mapping = Chain(Dense(nb_features => 1; bias=false), vec)
costs = mapping.(features)
# solutions = one_hot_argmax.(costs)
costs = encoder.(features)
noisy_solutions = [
one_hot_argmax(θ + noise_std * randn(rng, Float32, instance_dim)) for θ in costs
]
Expand All @@ -79,9 +86,9 @@ $TYPEDSIGNATURES

Initialize a linear model for `bench` using `Flux`.
"""
function Utils.generate_statistical_model(bench::ArgmaxBenchmark; seed=0)
Random.seed!(seed)
function Utils.generate_statistical_model(bench::ArgmaxBenchmark; seed=nothing)
(; nb_features) = bench
Random.seed!(seed)
return Chain(Dense(nb_features => 1; bias=false), vec)
end

Expand Down
25 changes: 16 additions & 9 deletions src/Ranking/Ranking.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,13 @@ Basic benchmark problem with ranking as the CO algorithm.
# Fields
$TYPEDFIELDS
"""
struct RankingBenchmark <: AbstractBenchmark
struct RankingBenchmark{E} <: AbstractBenchmark
"instances dimension, total number of classes"
instance_dim::Int
"number of features"
nb_features::Int
"true mapping between features and costs"
encoder::E
end

function Base.show(io::IO, bench::RankingBenchmark)
Expand All @@ -27,8 +29,15 @@ function Base.show(io::IO, bench::RankingBenchmark)
)
end

function RankingBenchmark(; instance_dim::Int=10, nb_features::Int=5)
return RankingBenchmark(instance_dim, nb_features)
"""
$TYPEDSIGNATURES

Custom constructor for [`RankingBenchmark`](@ref).
"""
function RankingBenchmark(; instance_dim::Int=10, nb_features::Int=5, seed=nothing)
Random.seed!(seed)
model = Chain(Dense(nb_features => 1; bias=false), vec)
return RankingBenchmark(instance_dim, nb_features, model)
end

"""
Expand Down Expand Up @@ -57,12 +66,10 @@ Generate a dataset of labeled instances for the ranking problem.
function Utils.generate_dataset(
bench::RankingBenchmark, dataset_size::Int=10; seed::Int=0, noise_std=0.0
)
(; instance_dim, nb_features) = bench
(; instance_dim, nb_features, encoder) = bench
rng = MersenneTwister(seed)
features = [randn(rng, Float32, nb_features, instance_dim) for _ in 1:dataset_size]
mapping = Chain(Dense(nb_features => 1; bias=false), vec)
costs = mapping.(features)
# solutions = ranking.(costs)
costs = encoder.(features)
noisy_solutions = [
ranking(θ .+ noise_std * randn(rng, Float32, instance_dim)) for θ in costs
]
Expand All @@ -77,9 +84,9 @@ $TYPEDSIGNATURES

Initialize a linear model for `bench` using `Flux`.
"""
function Utils.generate_statistical_model(bench::RankingBenchmark; seed=0)
Random.seed!(seed)
function Utils.generate_statistical_model(bench::RankingBenchmark; seed=nothing)
(; nb_features) = bench
Random.seed!(seed)
return Chain(Dense(nb_features => 1; bias=false), vec)
end

Expand Down
Loading