Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions benchmark/Project.toml
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
[deps]
AcceleratedKernels = "6a4ca0a5-0e36-4168-a932-d9be78d558f1"
BenchmarkPlots = "ab8c0f59-4072-4e0d-8f91-a91e1495eb26"
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
GPUArrays = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
KernelAbstractions = "63c18a36-062a-441e-b654-da1e3ab1ce7c"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd"
55 changes: 12 additions & 43 deletions benchmark/accumulate_1d.jl
Original file line number Diff line number Diff line change
@@ -1,53 +1,22 @@
import AcceleratedKernels as AK
using KernelAbstractions
group = addgroup!(SUITE, "accumulate_1d")

using BenchmarkTools
using Random
Random.seed!(0)
acc_f(x, y) = sin(x) + cos(y)


# Choose the Array backend:
#
# using CUDA
# const ArrayType = CuArray
#
# using AMDGPU
# const ArrayType = ROCArray
#
# using oneAPI
# const ArrayType = oneArray
#
# using Metal
# const ArrayType = MtlArray
#
# using OpenCL
# const ArrayType = CLArray
#
const ArrayType = Array


println("Using ArrayType: ", ArrayType)

GPUArrays.neutral_element(::typeof(acc_f), T) = T(0)

n = 1_000_000

for T in [UInt32, Int64, Float32]
local _group = addgroup!(group, "$T")

println("\n===\nBenchmarking accumulate(+) on $n UInt32 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=UInt32(0)) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n))))
display(@benchmark AK.accumulate(+, v, init=UInt32(0)) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n))))


println("\n===\nBenchmarking accumulate(+) on $n Int64 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=Int64(0)) setup=(v = ArrayType(rand(Int64(1):Int64(100), n))))
display(@benchmark AK.accumulate(+, v, init=Int64(0)) setup=(v = ArrayType(rand(Int64(1):Int64(100), n))))


println("\n===\nBenchmarking accumulate(+) on $n Float32 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=Float32(0)) setup=(v = ArrayType(rand(Float32, n))))
display(@benchmark AK.accumulate(+, v, init=Float32(0)) setup=(v = ArrayType(rand(Float32, n))))
local randrange = T == Float32 ? T : T(1):T(100)

_group["base_1d"] = @benchmarkable @sb(Base.accumulate(+, v; init=$T(0))) setup=(v = ArrayType(rand(rng, $randrange, n)))
_group["acck_1d"] = @benchmarkable @sb(AK.accumulate(+, v; init=$T(0))) setup=(v = ArrayType(rand(rng, $randrange, n)))

println("\n===\nBenchmarking accumulate((x, y) -> sin(x) + cos(y)) on $n Float32 - Base vs. AK")
display(@benchmark Base.accumulate((x, y) -> sin(x) + cos(y), v, init=Float32(0)) setup=(v = ArrayType(rand(Float32, n))))
display(@benchmark AK.accumulate((x, y) -> sin(x) + cos(y), v, init=Float32(0), neutral=Float32(0)) setup=(v = ArrayType(rand(Float32, n))))
T == Float32 || continue

_group["base_1d_sincos"] = @benchmarkable @sb(Base.accumulate(acc_f, v; init=$T(0))) setup=(v = ArrayType(rand(rng, $randrange, n)))
_group["acck_1d_sincos"] = @benchmarkable @sb(AK.accumulate(acc_f, v; init=$T(0), neutral=$T(0))) setup=(v = ArrayType(rand(rng, $randrange, n)))
end
79 changes: 16 additions & 63 deletions benchmark/accumulate_nd.jl
Original file line number Diff line number Diff line change
@@ -1,75 +1,28 @@
import AcceleratedKernels as AK
using KernelAbstractions
group = addgroup!(SUITE, "accumulate_nd")

using BenchmarkTools
using Random
Random.seed!(0)


# Choose the Array backend:
#
# using CUDA
# const ArrayType = CuArray
#
# using AMDGPU
# const ArrayType = ROCArray
#
# using oneAPI
# const ArrayType = oneArray
#
# using Metal
# const ArrayType = MtlArray
#
# using OpenCL
# const ArrayType = CLArray
#
const ArrayType = Array


println("Using ArrayType: ", ArrayType)
acc_f(x, y) = sin(x) + cos(y)

GPUArrays.neutral_element(::typeof(acc_f), T) = T(0)

n1 = 3
n2 = 1_000_000

for T in [UInt32, Int64, Float32]
local _group = addgroup!(group, "$T")

println("\n===\nBenchmarking accumulate(+, dims=1) on $n1 × $n2 UInt32 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=UInt32(0), dims=1) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n1, n2))))
display(@benchmark AK.accumulate(+, v, init=UInt32(0), dims=1) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n1, n2))))

println("\n===\nBenchmarking accumulate(+, dims=2) on $n1 × $n2 UInt32 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=UInt32(0), dims=2) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n1, n2))))
display(@benchmark AK.accumulate(+, v, init=UInt32(0), dims=2) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n1, n2))))




println("\n===\nBenchmarking accumulate(+, dims=1) on $n1 × $n2 Int64 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=Int64(0), dims=1) setup=(v = ArrayType(rand(Int64(1):Int64(100), n1, n2))))
display(@benchmark AK.accumulate(+, v, init=Int64(0), dims=1) setup=(v = ArrayType(rand(Int64(1):Int64(100), n1, n2))))

println("\n===\nBenchmarking accumulate(+, dims=2) on $n1 × $n2 Int64 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=Int64(0), dims=2) setup=(v = ArrayType(rand(Int64(1):Int64(100), n1, n2))))
display(@benchmark AK.accumulate(+, v, init=Int64(0), dims=2) setup=(v = ArrayType(rand(Int64(1):Int64(100), n1, n2))))




println("\n===\nBenchmarking accumulate(+, dims=1) on $n1 × $n2 Float32 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=Float32(0), dims=1) setup=(v = ArrayType(rand(Float32, n1, n2))))
display(@benchmark AK.accumulate(+, v, init=Float32(0), dims=1) setup=(v = ArrayType(rand(Float32, n1, n2))))

println("\n===\nBenchmarking accumulate(+, dims=2) on $n1 × $n2 Float32 - Base vs. AK")
display(@benchmark Base.accumulate(+, v, init=Float32(0), dims=2) setup=(v = ArrayType(rand(Float32, n1, n2))))
display(@benchmark AK.accumulate(+, v, init=Float32(0), dims=2) setup=(v = ArrayType(rand(Float32, n1, n2))))
local randrange = T == Float32 ? T : T(1):T(100)

_group["base_dims=1"] = @benchmarkable @sb(Base.accumulate(+, v, init=$T(0), dims=1)) setup=(v = ArrayType(rand(rng, $randrange, n1, n2)))
_group["acck_dims=1"] = @benchmarkable @sb(AK.accumulate(+, v, init=$T(0), dims=1)) setup=(v = ArrayType(rand(rng, $randrange, n1, n2)))

_group["base_dims=2"] = @benchmarkable @sb(Base.accumulate(+, v, init=$T(0), dims=2)) setup=(v = ArrayType(rand(rng, $randrange, n1, n2)))
_group["acck_dims=2"] = @benchmarkable @sb(AK.accumulate(+, v, init=$T(0), dims=2)) setup=(v = ArrayType(rand(rng, $randrange, n1, n2)))

T == Float32 || continue

println("\n===\nBenchmarking accumulate((x, y) -> sin(x) + cos(y)), dims=1) on $n1 × $n2 Float32 - Base vs. AK")
display(@benchmark Base.accumulate((x, y) -> sin(x) + cos(y), v, init=Float32(0), dims=1) setup=(v = ArrayType(rand(Float32, n1, n2))))
display(@benchmark AK.accumulate((x, y) -> sin(x) + cos(y), v, init=Float32(0), neutral=Float32(0), dims=1) setup=(v = ArrayType(rand(Float32, n1, n2))))
_group["base_sincos_dims=1"] = @benchmarkable @sb(Base.accumulate(acc_f, v, init=$T(0), dims=1)) setup=(v = ArrayType(rand(rng, $randrange, n1, n2)))
_group["acck_sincos_dims=1"] = @benchmarkable @sb(AK.accumulate(acc_f, v, init=$T(0), neutral=$T(0), dims=1)) setup=(v = ArrayType(rand(rng, $randrange, n1, n2)))

println("\n===\nBenchmarking accumulate((x, y) -> sin(x) + cos(y)), dims=2) on $n1 × $n2 Float32 - Base vs. AK")
display(@benchmark Base.accumulate((x, y) -> sin(x) + cos(y), v, init=Float32(0), dims=2) setup=(v = ArrayType(rand(Float32, n1, n2))))
display(@benchmark AK.accumulate((x, y) -> sin(x) + cos(y), v, init=Float32(0), neutral=Float32(0), dims=2) setup=(v = ArrayType(rand(Float32, n1, n2))))
_group["base_sincos_dims=2"] = @benchmarkable @sb(Base.accumulate(acc_f, v, init=$T(0), dims=2)) setup=(v = ArrayType(rand(rng, $randrange, n1, n2)))
_group["acck_sincos_dims=2"] = @benchmarkable @sb(AK.accumulate(acc_f, v, init=$T(0), neutral=$T(0), dims=2)) setup=(v = ArrayType(rand(rng, $randrange, n1, n2)))
end
Loading
Loading