-
Notifications
You must be signed in to change notification settings - Fork 79
Enzyme support older versions #537
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Changes from 2 commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,342 @@ | ||
| # https://github.com/EnzymeAD/Enzyme.jl/issues/1516 | ||
| # On the CPU `autodiff_deferred` can deadlock. | ||
| # Hence a specialized CPU version | ||
| function cpu_fwd(ctx, f, args...) | ||
| EnzymeCore.autodiff(Forward, Const(f), Const{Nothing}, Const(ctx), args...) | ||
| return nothing | ||
| end | ||
|
|
||
| function gpu_fwd(ctx, f, args...) | ||
| EnzymeCore.autodiff_deferred(Forward, Const(f), Const{Nothing}, Const(ctx), args...) | ||
| return nothing | ||
| end | ||
|
|
||
| function EnzymeRules.forward( | ||
| func::Const{<:Kernel{CPU}}, | ||
| ::Type{Const{Nothing}}, | ||
| args...; | ||
| ndrange = nothing, | ||
| workgroupsize = nothing, | ||
| ) | ||
| kernel = func.val | ||
| f = kernel.f | ||
| fwd_kernel = similar(kernel, cpu_fwd) | ||
|
|
||
| fwd_kernel(f, args...; ndrange, workgroupsize) | ||
| end | ||
|
|
||
| function EnzymeRules.forward( | ||
| func::Const{<:Kernel{<:GPU}}, | ||
| ::Type{Const{Nothing}}, | ||
| args...; | ||
| ndrange = nothing, | ||
| workgroupsize = nothing, | ||
| ) | ||
| kernel = func.val | ||
| f = kernel.f | ||
| fwd_kernel = similar(kernel, gpu_fwd) | ||
|
|
||
| fwd_kernel(f, args...; ndrange, workgroupsize) | ||
| end | ||
|
|
||
| _enzyme_mkcontext(kernel::Kernel{CPU}, ndrange, iterspace, dynamic) = | ||
| mkcontext(kernel, first(blocks(iterspace)), ndrange, iterspace, dynamic) | ||
| _enzyme_mkcontext(kernel::Kernel{<:GPU}, ndrange, iterspace, dynamic) = | ||
| mkcontext(kernel, ndrange, iterspace) | ||
|
|
||
| _augmented_return(::Kernel{CPU}, subtape, arg_refs, tape_type) = | ||
| AugmentedReturn{Nothing, Nothing, Tuple{Array, typeof(arg_refs), typeof(tape_type)}}( | ||
| nothing, | ||
| nothing, | ||
| (subtape, arg_refs, tape_type), | ||
| ) | ||
| _augmented_return(::Kernel{<:GPU}, subtape, arg_refs, tape_type) = | ||
| AugmentedReturn{Nothing, Nothing, Any}(nothing, nothing, (subtape, arg_refs, tape_type)) | ||
|
|
||
| function _create_tape_kernel( | ||
| kernel::Kernel{CPU}, | ||
| ModifiedBetween, | ||
| FT, | ||
| ctxTy, | ||
| ndrange, | ||
| iterspace, | ||
| args2..., | ||
| ) | ||
| TapeType = EnzymeCore.tape_type( | ||
| ReverseSplitModified(ReverseSplitWithPrimal, ModifiedBetween), | ||
| FT, | ||
| Const{Nothing}, | ||
| Const{ctxTy}, | ||
| map(Core.Typeof, args2)..., | ||
| ) | ||
| subtape = Array{TapeType}(undef, size(blocks(iterspace))) | ||
| aug_kernel = similar(kernel, cpu_aug_fwd) | ||
| return TapeType, subtape, aug_kernel | ||
| end | ||
|
|
||
| function _create_tape_kernel( | ||
| kernel::Kernel{<:GPU}, | ||
| ModifiedBetween, | ||
| FT, | ||
| ctxTy, | ||
| ndrange, | ||
| iterspace, | ||
| args2..., | ||
| ) | ||
| # For peeking at the TapeType we need to first construct a correct compilation job | ||
| # this requires the use of the device side representation of arguments. | ||
| # So we convert the arguments here, this is a bit wasteful since the `aug_kernel` call | ||
| # will later do the same. | ||
| dev_args2 = ((argconvert(kernel, a) for a in args2)...,) | ||
| dev_TT = map(Core.Typeof, dev_args2) | ||
|
|
||
| job = | ||
| EnzymeCore.compiler_job_from_backend(backend(kernel), typeof(() -> return), Tuple{}) | ||
| TapeType = EnzymeCore.tape_type( | ||
| job, | ||
| ReverseSplitModified(ReverseSplitWithPrimal, ModifiedBetween), | ||
| FT, | ||
| Const{Nothing}, | ||
| Const{ctxTy}, | ||
| dev_TT..., | ||
| ) | ||
|
|
||
| # Allocate per thread | ||
| subtape = allocate(backend(kernel), TapeType, prod(ndrange)) | ||
|
|
||
| aug_kernel = similar(kernel, gpu_aug_fwd) | ||
| return TapeType, subtape, aug_kernel | ||
| end | ||
|
|
||
| _create_rev_kernel(kernel::Kernel{CPU}) = similar(kernel, cpu_rev) | ||
| _create_rev_kernel(kernel::Kernel{<:GPU}) = similar(kernel, gpu_rev) | ||
|
|
||
| function cpu_aug_fwd( | ||
| ctx, | ||
| f::FT, | ||
| ::Val{ModifiedBetween}, | ||
| subtape, | ||
| ::Val{TapeType}, | ||
| args..., | ||
| ) where {ModifiedBetween, FT, TapeType} | ||
| # A2 = Const{Nothing} -- since f->Nothing | ||
| forward, _ = EnzymeCore.autodiff_thunk( | ||
| ReverseSplitModified(ReverseSplitWithPrimal, Val(ModifiedBetween)), | ||
| Const{Core.Typeof(f)}, | ||
| Const{Nothing}, | ||
| Const{Core.Typeof(ctx)}, | ||
| map(Core.Typeof, args)..., | ||
| ) | ||
|
|
||
| # On the CPU: F is a per block function | ||
| # On the CPU: subtape::Vector{Vector} | ||
| I = __index_Group_Cartesian(ctx, CartesianIndex(1, 1)) #=fake=# | ||
| subtape[I] = forward(Const(f), Const(ctx), args...)[1] | ||
| return nothing | ||
| end | ||
|
|
||
| function cpu_rev( | ||
| ctx, | ||
| f::FT, | ||
| ::Val{ModifiedBetween}, | ||
| subtape, | ||
| ::Val{TapeType}, | ||
| args..., | ||
| ) where {ModifiedBetween, FT, TapeType} | ||
| _, reverse = EnzymeCore.autodiff_thunk( | ||
| ReverseSplitModified(ReverseSplitWithPrimal, Val(ModifiedBetween)), | ||
| Const{Core.Typeof(f)}, | ||
| Const{Nothing}, | ||
| Const{Core.Typeof(ctx)}, | ||
| map(Core.Typeof, args)..., | ||
| ) | ||
| I = __index_Group_Cartesian(ctx, CartesianIndex(1, 1)) #=fake=# | ||
| tp = subtape[I] | ||
| reverse(Const(f), Const(ctx), args..., tp) | ||
| return nothing | ||
| end | ||
|
|
||
| # GPU support | ||
| function gpu_aug_fwd( | ||
| ctx, | ||
| f::FT, | ||
| ::Val{ModifiedBetween}, | ||
| subtape, | ||
| ::Val{TapeType}, | ||
| args..., | ||
| ) where {ModifiedBetween, FT, TapeType} | ||
| # A2 = Const{Nothing} -- since f->Nothing | ||
| forward, _ = EnzymeCore.autodiff_deferred_thunk( | ||
| ReverseSplitModified(ReverseSplitWithPrimal, Val(ModifiedBetween)), | ||
| TapeType, | ||
| Const{Core.Typeof(f)}, | ||
| Const{Nothing}, | ||
| Const{Core.Typeof(ctx)}, | ||
| map(Core.Typeof, args)..., | ||
| ) | ||
|
|
||
| # On the GPU: F is a per thread function | ||
| # On the GPU: subtape::Vector | ||
| if __validindex(ctx) | ||
| I = __index_Global_Linear(ctx) | ||
| subtape[I] = forward(Const(f), Const(ctx), args...)[1] | ||
| end | ||
| return nothing | ||
| end | ||
|
|
||
| function gpu_rev( | ||
| ctx, | ||
| f::FT, | ||
| ::Val{ModifiedBetween}, | ||
| subtape, | ||
| ::Val{TapeType}, | ||
| args..., | ||
| ) where {ModifiedBetween, FT, TapeType} | ||
| # XXX: TapeType and A2 as args to autodiff_deferred_thunk | ||
| _, reverse = EnzymeCore.autodiff_deferred_thunk( | ||
| ReverseSplitModified(ReverseSplitWithPrimal, Val(ModifiedBetween)), | ||
| TapeType, | ||
| Const{Core.Typeof(f)}, | ||
| Const{Nothing}, | ||
| Const{Core.Typeof(ctx)}, | ||
| map(Core.Typeof, args)..., | ||
| ) | ||
| if __validindex(ctx) | ||
| I = __index_Global_Linear(ctx) | ||
| tp = subtape[I] | ||
| reverse(Const(f), Const(ctx), args..., tp) | ||
| end | ||
| return nothing | ||
| end | ||
|
|
||
| function EnzymeRules.augmented_primal( | ||
| config::Config, | ||
| func::Const{<:Kernel}, | ||
| ::Type{Const{Nothing}}, | ||
| args::Vararg{Any, N}; | ||
| ndrange = nothing, | ||
| workgroupsize = nothing, | ||
| ) where {N} | ||
| kernel = func.val | ||
| f = kernel.f | ||
|
|
||
| ndrange, workgroupsize, iterspace, dynamic = | ||
| launch_config(kernel, ndrange, workgroupsize) | ||
| ctx = _enzyme_mkcontext(kernel, ndrange, iterspace, dynamic) | ||
| ctxTy = Core.Typeof(ctx) # CompilerMetadata{ndrange(kernel), Core.Typeof(dynamic)} | ||
| # TODO autodiff_deferred on the func.val | ||
| ModifiedBetween = Val((overwritten(config)[1], false, overwritten(config)[2:end]...)) | ||
|
|
||
| FT = Const{Core.Typeof(f)} | ||
|
|
||
| arg_refs = ntuple(Val(N)) do i | ||
| Base.@_inline_meta | ||
| if args[i] isa Active | ||
| if func.val isa Kernel{<:GPU} | ||
| error("Active kernel arguments not supported on GPU") | ||
| else | ||
| Ref(EnzymeCore.make_zero(args[i].val)) | ||
| end | ||
| else | ||
| nothing | ||
| end | ||
| end | ||
| args2 = ntuple(Val(N)) do i | ||
| Base.@_inline_meta | ||
| if args[i] isa Active | ||
| MixedDuplicated(args[i].val, arg_refs[i]) | ||
| else | ||
| args[i] | ||
| end | ||
| end | ||
|
|
||
| TapeType, subtape, aug_kernel = _create_tape_kernel( | ||
| kernel, | ||
| ModifiedBetween, | ||
| FT, | ||
| ctxTy, | ||
| ndrange, | ||
| iterspace, | ||
| args2..., | ||
| ) | ||
| aug_kernel(f, ModifiedBetween, subtape, Val(TapeType), args2...; ndrange, workgroupsize) | ||
|
|
||
| # TODO the fact that ctxTy is type unstable means this is all type unstable. | ||
| # Since custom rules require a fixed return type, explicitly cast to Any, rather | ||
| # than returning a AugmentedReturn{Nothing, Nothing, T} where T. | ||
| return _augmented_return(kernel, subtape, arg_refs, TapeType) | ||
| end | ||
|
|
||
| function EnzymeRules.reverse( | ||
| config::Config, | ||
| func::Const{<:Kernel}, | ||
| ::Type{<:EnzymeCore.Annotation}, | ||
| tape, | ||
| args::Vararg{Any, N}; | ||
| ndrange = nothing, | ||
| workgroupsize = nothing, | ||
| ) where {N} | ||
| subtape, arg_refs, tape_type = tape | ||
|
|
||
| args2 = ntuple(Val(N)) do i | ||
| Base.@_inline_meta | ||
| if args[i] isa Active | ||
| MixedDuplicated(args[i].val, arg_refs[i]) | ||
| else | ||
| args[i] | ||
| end | ||
| end | ||
|
|
||
| kernel = func.val | ||
| f = kernel.f | ||
|
|
||
| ModifiedBetween = Val((overwritten(config)[1], false, overwritten(config)[2:end]...)) | ||
|
|
||
| rev_kernel = _create_rev_kernel(kernel) | ||
| rev_kernel( | ||
| f, | ||
| ModifiedBetween, | ||
| subtape, | ||
| Val(tape_type), | ||
| args2...; | ||
| ndrange, | ||
| workgroupsize, | ||
| ) | ||
| res = ntuple(Val(N)) do i | ||
| Base.@_inline_meta | ||
| if args[i] isa Active | ||
| arg_refs[i][] | ||
| else | ||
| nothing | ||
| end | ||
| end | ||
| # Reverse synchronization right after the kernel launch | ||
| synchronize(backend(kernel)) | ||
| return res | ||
| end | ||
|
|
||
| # Synchronize rules | ||
| # TODO: Right now we do the synchronization as part of the kernel launch in the augmented primal | ||
| # and reverse rules. This is not ideal, as we would want to launch the kernel in the reverse | ||
| # synchronize rule and then synchronize where the launch was. However, with the current | ||
| # kernel semantics this ensures correctness for now. | ||
| function EnzymeRules.augmented_primal( | ||
| config::Config, | ||
| func::Const{typeof(synchronize)}, | ||
| ::Type{Const{Nothing}}, | ||
| backend::T, | ||
| ) where {T <: EnzymeCore.Annotation} | ||
| synchronize(backend.val) | ||
| return AugmentedReturn(nothing, nothing, nothing) | ||
| end | ||
|
|
||
| function EnzymeRules.reverse( | ||
| config::Config, | ||
| func::Const{typeof(synchronize)}, | ||
| ::Type{Const{Nothing}}, | ||
| tape, | ||
| backend, | ||
| ) | ||
| # noop for now | ||
| return (nothing,) | ||
| end | ||
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can we name these files after the EnzymeCore version?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done