We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 0c76b7a commit 3569b57Copy full SHA for 3569b57
examples/train-kernel-parameters/script.jl
@@ -32,7 +32,10 @@ plot!(x_test, sinc; lab="true function")
32
# To train the kernel parameters via ForwardDiff.jl
33
# we need to create a function creating a kernel from an array
34
35
-kernelcall(θ) = (exp(θ[1]) * SqExponentialKernel() + exp(θ[2]) * Matern32Kernel()) ∘ ScaleTransform(exp(θ[3]))
+function kernelcall(θ)
36
+ return (exp(θ[1]) * SqExponentialKernel() + exp(θ[2]) * Matern32Kernel()) ∘
37
+ ScaleTransform(exp(θ[3]))
38
+end
39
40
# From theory we know the prediction for a test set x given
41
# the kernel parameters and normalization constant
0 commit comments