Skip to content
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 37 additions & 1 deletion src/basekernels/maha.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

Mahalanobis distance-based kernel given by
```math
κ(x,y) = exp(-r^2), r^2 = maha(x,P,y) = (x-y)'*inv(P)*(x-y)
κ(x,y) = exp(-r^2), r^2 = maha(x,P,y) = (x-y)'* P *(x-y)
```
where the matrix P is the metric.

Expand All @@ -20,4 +20,40 @@ kappa(κ::MahalanobisKernel, d::T) where {T<:Real} = exp(-d)

metric(κ::MahalanobisKernel) = SqMahalanobis(κ.P)

function dot_perslice(A::AbstractMatrix, B::AbstractMatrix; dims=2)
return reshape(sum(A .* B, dims=3-dims), :)
end

function Distances.pairwise(
metric::SqMahalanobis,
a::AbstractMatrix,
b::AbstractMatrix;
dims::Union{Nothing,Integer}=nothing
)
dims = Distances.deprecated_dims(dims)
Q = metric.qmat
Qa = Q * a
Qb = Q * b
sa2 = dot_perslice(a, Qa; dims=dims)
sb2 = dot_perslice(b, Qb; dims=dims)
r = a' * Qb
r = sa2 .+ sb2' - 2 * r
return r
end

function Distances.pairwise(
metric::SqMahalanobis,
a::AbstractMatrix,
dims::Union{Nothing,Integer}=nothing
)
dims = Distances.deprecated_dims(dims)
Q = metric.qmat
Qa = Q * a
sa2 = dot_perslice(a, Qa; dims=dims)
r = a' * Qa
r = sa2 .+ sa2' - 2 * r
r = Symmetric(r')
return r
end

Base.show(io::IO, κ::MahalanobisKernel) = print(io, "Mahalanobis Kernel (size(P) = ", size(κ.P), ")")
28 changes: 28 additions & 0 deletions src/basekernels/nn.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,4 +23,32 @@ function (κ::NeuralNetworkKernel)(x, y)
return asin(dot(x, y) / sqrt((1 + sum(abs2, x)) * (1 + sum(abs2, y))))
end

function kernelmatrix(::NeuralNetworkKernel, x::ColVecs, y::ColVecs)
validate_inputs(x, y)
X_2 = sum(x.X .* x.X, dims=1)
Y_2 = sum(y.X .* y.X, dims=1)
XY = x.X' * y.X
return asin.(XY ./ sqrt.((X_2 .+ 1)' * (Y_2 .+ 1)))
end

function kernelmatrix(::NeuralNetworkKernel, x::ColVecs)
X_2_1 = sum(x.X .* x.X, dims=1) .+ 1
XX = x.X' * x.X
return asin.(XX ./ sqrt.(X_2_1' * X_2_1))
end

function kernelmatrix(::NeuralNetworkKernel, x::RowVecs, y::RowVecs)
validate_inputs(x, y)
X_2 = sum(x.X .* x.X, dims=2)
Y_2 = sum(y.X .* y.X, dims=2)
XY = x.X * y.X'
return asin.(XY ./ sqrt.((X_2 .+ 1)' * (Y_2 .+ 1)))
end

function kernelmatrix(::NeuralNetworkKernel, x::RowVecs)
X_2_1 = sum(x.X .* x.X, dims=2) .+ 1
XX = x.X * x.X'
return asin.(XX ./ sqrt.(X_2_1' * X_2_1))
end

Base.show(io::IO, κ::NeuralNetworkKernel) = print(io, "Neural Network Kernel")
3 changes: 1 addition & 2 deletions test/basekernels/exponential.jl
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,7 @@
@test metric(GammaExponentialKernel(γ=2.0)) == SqEuclidean()
@test repr(k) == "Gamma Exponential Kernel (γ = $(γ))"
@test KernelFunctions.iskroncompatible(k) == true
test_ADs(γ -> GammaExponentialKernel(gamma=first(γ)), [γ], ADs = [:ForwardDiff, :ReverseDiff])
@test_broken "Zygote gradient given γ"
test_ADs(γ -> GammaExponentialKernel(gamma=first(γ)), [γ])
#Coherence :
@test GammaExponentialKernel(γ=1.0)(v1,v2) ≈ SqExponentialKernel()(v1,v2)
@test GammaExponentialKernel(γ=0.5)(v1,v2) ≈ ExponentialKernel()(v1,v2)
Expand Down
4 changes: 2 additions & 2 deletions test/basekernels/fbm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,6 @@
@test kernelmatrix(k, x1*ones(1,1), x2*ones(1,1))[1] k(x1, x2) atol=1e-5

@test repr(k) == "Fractional Brownian Motion Kernel (h = $(h))"
test_ADs(FBMKernel, ADs = [:ReverseDiff])
@test_broken "Tests failing for kernelmatrix(k, x) for ForwardDiff and Zygote"
test_ADs(FBMKernel, ADs = [:ReverseDiff, :Zygote])
@test_broken "Tests failing for kernelmatrix(k, x) for ForwardDiff"
end
3 changes: 1 addition & 2 deletions test/basekernels/gabor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
@test k.ell 1.0 atol=1e-5
@test k.p 1.0 atol=1e-5
@test repr(k) == "Gabor Kernel (ell = 1.0, p = 1.0)"
#test_ADs(x -> GaborKernel(ell = x[1], p = x[2]), [ell, p])#, ADs = [:ForwardDiff, :ReverseDiff])
@test_broken "Tests failing for Zygote on differentiating through ell and p"
test_ADs(x -> GaborKernel(ell = x[1], p = x[2]), [ell, p], ADs = [:Zygote])
# Tests are also failing randomly for ForwardDiff and ReverseDiff but randomly
end
2 changes: 1 addition & 1 deletion test/basekernels/maha.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,6 @@
@test k(v1, v2) ≈ exp(-sqmahalanobis(v1, v2, P))
@test kappa(ExponentialKernel(), x) == kappa(k, x)
@test repr(k) == "Mahalanobis Kernel (size(P) = $(size(P)))"
# test_ADs(P -> MahalanobisKernel(P), P)
test_ADs(P -> MahalanobisKernel(P), P, ADs=[:Zygote])
@test_broken "Nothing passes (problem with Mahalanobis distance in Distances)"
end
3 changes: 1 addition & 2 deletions test/basekernels/nn.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,5 @@
@test_throws DimensionMismatch kernelmatrix!(A5, k, ones(4,3), ones(3,4))

@test k([x1], [x2]) ≈ k(x1, x2) atol=1e-5
test_ADs(NeuralNetworkKernel, ADs = [:ForwardDiff, :ReverseDiff])
@test_broken "Zygote uncompatible with BaseKernel"
test_ADs(NeuralNetworkKernel)
end