Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion GNNLux/docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,8 @@ makedocs(;
pages = ["Home" => "index.md",
"API Reference" => [
"Basic" => "api/basic.md",
"Convolutional layers" => "api/conv.md"]]
"Convolutional layers" => "api/conv.md",
"Temporal Convolutional layers" => "api/temporalconv.md",]]
)


Expand Down
3 changes: 2 additions & 1 deletion GNNLux/docs/src/api/basic.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@
CurrentModule = GNNLux
```

## GNNLayer
## Basic Layers

```@docs
GNNLayer
GNNChain
Expand Down
15 changes: 15 additions & 0 deletions GNNLux/docs/src/api/temporalconv.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
```@meta
CurrentModule = GNNLux
```

# Temporal Graph-Convolutional Layers

Convolutions for time-varying graphs (temporal graphs) such as the [`TemporalSnapshotsGNNGraph`](@ref).

## Docs

```@autodocs
Modules = [GNNLux]
Pages = ["layers/temporalconv.jl"]
Private = false
```
246 changes: 245 additions & 1 deletion GNNLux/src/layers/temporalconv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,96 @@ function Base.show(io::IO, tgcn::TGCNCell)
print(io, "TGCNCell($(tgcn.in_dims) => $(tgcn.out_dims))")
end

"""
TGCN(in => out; use_bias = true, init_weight = glorot_uniform, init_state = zeros32, init_bias = zeros32, add_self_loops = false, use_edge_weight = true)

Temporal Graph Convolutional Network (T-GCN) recurrent layer from the paper [T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction](https://arxiv.org/pdf/1811.05320.pdf).

Performs a layer of GCNConv to model spatial dependencies, followed by a Gated Recurrent Unit (GRU) cell to model temporal dependencies.

# Arguments

- `in`: Number of input features.
- `out`: Number of output features.
- `use_bias`: Add learnable bias. Default `true`.
- `init_weight`: Weights' initializer. Default `glorot_uniform`.
- `init_state`: Initial state of the hidden stat of the GRU layer. Default `zeros32`.
- `init_bias`: Bias initializer. Default `zeros32`.
- `add_self_loops`: Add self loops to the graph before performing the convolution. Default `false`.
- `use_edge_weight`: If `true`, consider the edge weights in the input graph (if available).
If `add_self_loops=true` the new weights will be set to 1.
This option is ignored if the `edge_weight` is explicitly provided in the forward pass.
Default `false`.



# Examples

```julia
using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
g = rand_graph(rng, 5, 10)
x = rand(rng, Float32, 2, 5)

# create TGCN layer
tgcn = TGCN(2 => 6)

# setup layer
ps, st = LuxCore.setup(rng, tgcn)

# forward pass
y, st = tgcn(g, x, ps, st) # result size (6, 5)
```
"""
TGCN(ch::Pair{Int, Int}; kwargs...) = GNNLux.StatefulRecurrentCell(TGCNCell(ch; kwargs...))

"""
A3TGCN(in => out; use_bias = true, init_weight = glorot_uniform, init_state = zeros32, init_bias = zeros32, add_self_loops = false, use_edge_weight = true)

Attention Temporal Graph Convolutional Network (A3T-GCN) model from the paper [A3T-GCN: Attention Temporal Graph
Convolutional Network for Traffic Forecasting](https://arxiv.org/pdf/2006.11583.pdf).

Performs a TGCN layer, followed by a soft attention layer.

# Arguments

- `in`: Number of input features.
- `out`: Number of output features.
- `use_bias`: Add learnable bias. Default `true`.
- `init_weight`: Weights' initializer. Default `glorot_uniform`.
- `init_state`: Initial state of the hidden stat of the GRU layer. Default `zeros32`.
- `init_bias`: Bias initializer. Default `zeros32`.
- `add_self_loops`: Add self loops to the graph before performing the convolution. Default `false`.
- `use_edge_weight`: If `true`, consider the edge weights in the input graph (if available).
If `add_self_loops=true` the new weights will be set to 1.
This option is ignored if the `edge_weight` is explicitly provided in the forward pass.
Default `false`.
# Examples

```julia
using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
g = rand_graph(rng, 5, 10)
x = rand(rng, Float32, 2, 5)

# create A3TGCN layer
l = A3TGCN(2 => 6)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st) # result size (6, 5)
```
"""
@concrete struct A3TGCN <: GNNContainerLayer{(:tgcn, :dense1, :dense2)}
in_dims::Int
out_dims::Int
Expand Down Expand Up @@ -94,7 +182,7 @@ function Base.show(io::IO, l::A3TGCN)
print(io, "A3TGCN($(l.in_dims) => $(l.out_dims))")
end

@concrete struct GConvGRUCell <: GNNContainerLayer{(:conv_x_r, :conv_h_r, :conv_x_z, :conv_h_z, :conv_x_h, :conv_h_h)}
@concrete struct GConvGRUCell <: GNNContainerLayer{(:conv_x_r, :conv_h_r, :conv_x_z, :conv_h_z, :conv_x_h, :conv_h_h)}
in_dims::Int
out_dims::Int
k::Int
Expand Down Expand Up @@ -147,6 +235,45 @@ end

LuxCore.outputsize(l::GConvGRUCell) = (l.out_dims,)

"""
GConvGRU(in => out, k; use_bias = true, init_weight = glorot_uniform, init_state = zeros32, init_bias = zeros32)

Graph Convolutional Gated Recurrent Unit (GConvGRU) recurrent layer from the paper [Structured Sequence Modeling with Graph Convolutional Recurrent Networks](https://arxiv.org/pdf/1612.07659).

Performs a layer of ChebConv to model spatial dependencies, followed by a Gated Recurrent Unit (GRU) cell to model temporal dependencies.

# Arguments

- `in`: Number of input features.
- `out`: Number of output features.
- `k`: Chebyshev polynomial order.
- `use_bias`: Add learnable bias. Default `true`.
- `init_weight`: Weights' initializer. Default `glorot_uniform`.
- `init_state`: Initial state of the hidden stat of the GRU layer. Default `zeros32`.
- `init_bias`: Bias initializer. Default `zeros32`.

# Examples

```julia
using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
g = rand_graph(rng, 5, 10)
x = rand(rng, Float32, 2, 5)

# create layer
l = GConvGRU(2 => 5, 2)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st) # result size (5, 5)
```
"""
GConvGRU(ch::Pair{Int, Int}, k::Int; kwargs...) = GNNLux.StatefulRecurrentCell(GConvGRUCell(ch, k; kwargs...))

@concrete struct GConvLSTMCell <: GNNContainerLayer{(:conv_x_i, :conv_h_i, :dense_i, :conv_x_f, :conv_h_f, :dense_f, :conv_x_c, :conv_h_c, :dense_c, :conv_x_o, :conv_h_o, :dense_o)}
Expand Down Expand Up @@ -230,6 +357,45 @@ end

LuxCore.outputsize(l::GConvLSTMCell) = (l.out_dims,)

"""
GConvLSTM(in => out, k; use_bias = true, init_weight = glorot_uniform, init_state = zeros32, init_bias = zeros32)

Graph Convolutional Long Short-Term Memory (GConvLSTM) recurrent layer from the paper [Structured Sequence Modeling with Graph Convolutional Recurrent Networks](https://arxiv.org/pdf/1612.07659).

Performs a layer of ChebConv to model spatial dependencies, followed by a Long Short-Term Memory (LSTM) cell to model temporal dependencies.

# Arguments

- `in`: Number of input features.
- `out`: Number of output features.
- `k`: Chebyshev polynomial order.
- `use_bias`: Add learnable bias. Default `true`.
- `init_weight`: Weights' initializer. Default `glorot_uniform`.
- `init_state`: Initial state of the hidden stat of the GRU layer. Default `zeros32`.
- `init_bias`: Bias initializer. Default `zeros32`.

# Examples

```julia
using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
g = rand_graph(rng, 5, 10)
x = rand(rng, Float32, 2, 5)

# create GConvLSTM layer
l = GConvLSTM(2 => 5, 2)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st) # result size (5, 5)
```
"""
GConvLSTM(ch::Pair{Int, Int}, k::Int; kwargs...) = GNNLux.StatefulRecurrentCell(GConvLSTMCell(ch, k; kwargs...))

@concrete struct DCGRUCell <: GNNContainerLayer{(:dconv_u, :dconv_r, :dconv_c)}
Expand Down Expand Up @@ -272,8 +438,86 @@ end

LuxCore.outputsize(l::DCGRUCell) = (l.out_dims,)

"""
DCGRU(in => out, k; use_bias = true, init_weight = glorot_uniform, init_state = zeros32, init_bias = zeros32)

Diffusion Convolutional Recurrent Neural Network (DCGRU) layer from the paper [Diffusion Convolutional Recurrent Neural
Network: Data-driven Traffic Forecasting](https://arxiv.org/pdf/1707.01926).

Performs a Diffusion Convolutional layer to model spatial dependencies, followed by a Gated Recurrent Unit (GRU) cell to model temporal dependencies.

# Arguments

- `in`: Number of input features.
- `out`: Number of output features.
- `k`: Diffusion step.
- `use_bias`: Add learnable bias. Default `true`.
- `init_weight`: Weights' initializer. Default `glorot_uniform`.
- `init_state`: Initial state of the hidden stat of the GRU layer. Default `zeros32`.
- `init_bias`: Bias initializer. Default `zeros32`.

# Examples

```julia
using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
g = rand_graph(rng, 5, 10)
x = rand(rng, Float32, 2, 5)

# create layer
l = DCGRU(2 => 5, 2)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(g, x, ps, st) # result size (5, 5)
```
"""
DCGRU(ch::Pair{Int, Int}, k::Int; kwargs...) = GNNLux.StatefulRecurrentCell(DCGRUCell(ch, k; kwargs...))

"""
EvolveGCNO(ch; use_bias = true, init_weight = glorot_uniform, init_state = zeros32, init_bias = zeros32)

Evolving Graph Convolutional Network (EvolveGCNO) layer from the paper [EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs](https://arxiv.org/pdf/1902.10191).

Perfoms a Graph Convolutional layer with parameters derived from a Long Short-Term Memory (LSTM) layer across the snapshots of the temporal graph.


# Arguments

- `in`: Number of input features.
- `out`: Number of output features.
- `use_bias`: Add learnable bias. Default `true`.
- `init_weight`: Weights' initializer. Default `glorot_uniform`.
- `init_state`: Initial state of the hidden stat of the GRU layer. Default `zeros32`.
- `init_bias`: Bias initializer. Default `zeros32`.

# Examples

```julia
using GNNLux, Lux, Random

# initialize random number generator
rng = Random.default_rng()

# create data
tg = TemporalSnapshotsGNNGraph([rand_graph(rng, 10, 20; ndata = rand(rng, 4, 10)), rand_graph(rng, 10, 14; ndata = rand(rng, 4, 10)), rand_graph(rng, 10, 22; ndata = rand(rng, 4, 10))])

# create layer
l = EvolveGCNO(4 => 5)

# setup layer
ps, st = LuxCore.setup(rng, l)

# forward pass
y, st = l(tg, tg.ndata.x , ps, st) # result size 3, size y[1] (5, 10)
```
"""
@concrete struct EvolveGCNO <: GNNLayer
in_dims::Int
out_dims::Int
Expand Down
Loading