Skip to content

solve type stability of DiskIndex #267

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Aug 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 77 additions & 19 deletions src/diskindex.jl
Original file line number Diff line number Diff line change
Expand Up @@ -29,13 +29,15 @@ struct DiskIndex{N,M,A<:Tuple,B<:Tuple,C<:Tuple}
data_indices::C
end
function DiskIndex(
output_size::NTuple{N,<:Integer},
temparray_size::NTuple{M,<:Integer},
output_size::Tuple{Vararg{Integer}},
temparray_size::Tuple{Vararg{Integer}},
output_indices::Tuple,
temparray_indices::Tuple,
data_indices::Tuple
) where {N,M}
DiskIndex(Int.(output_size), Int.(temparray_size), output_indices, temparray_indices, data_indices)
)
output_size_int = map(Int, output_size)
temparray_size_int = map(Int, temparray_size)
DiskIndex(output_size_int, temparray_size_int, output_indices, temparray_indices, data_indices)
end
DiskIndex(a, i) = DiskIndex(a, i, batchstrategy(a))
DiskIndex(a, i, batch_strategy) =
Expand All @@ -54,9 +56,41 @@ function _resolve_indices(chunks, i, indices_pre::DiskIndex, strategy::BatchStra
indices_new, chunksrem = process_index(inow, chunks, strategy)
_resolve_indices(chunksrem, tail(i), merge_index(indices_pre, indices_new), strategy)
end
# Some (pretty stupid) hacks to get around Base recursion limiting https://github.com/JuliaLang/julia/pull/48059
# TODO: We can remove these if Base sorts this out.
# This makes 3 arg type stable
function _resolve_indices(chunks::Tuple{<:Any}, i::Tuple{<:Any}, indices_pre::DiskIndex, strategy::BatchStrategy)
inow = first(i)
indices_new, chunksrem = process_index(inow, chunks, strategy)
return merge_index(indices_pre, indices_new)
end
# This makes 4 arg type stable
function _resolve_indices(chunks::Tuple{<:Any,<:Any}, i::Tuple{<:Any,<:Any}, indices_pre::DiskIndex, strategy::BatchStrategy)
inow = first(i)
indices_new, chunksrem = process_index(inow, chunks, strategy)
return _resolve_indices(chunksrem, tail(i), merge_index(indices_pre, indices_new), strategy)
end
# This makes 5 arg type stable
function _resolve_indices(chunks::Tuple{<:Any,<:Any,<:Any}, i::Tuple{<:Any,<:Any,<:Any}, indices_pre::DiskIndex, strategy::BatchStrategy)
inow = first(i)
indices_new, chunksrem = process_index(inow, chunks, strategy)
return _resolve_indices(chunksrem, tail(i), merge_index(indices_pre, indices_new), strategy)
end
# This makes 6 arg type stable
function _resolve_indices(chunks::Tuple{<:Any,<:Any,<:Any,<:Any}, i::Tuple{<:Any,<:Any,<:Any,<:Any}, indices_pre::DiskIndex, strategy::BatchStrategy)
inow = first(i)
indices_new, chunksrem = process_index(inow, chunks, strategy)
return _resolve_indices(chunksrem, tail(i), merge_index(indices_pre, indices_new), strategy)
end
# Splat out CartesianIndex as regular indices
function _resolve_indices(
chunks, i::Tuple{<:CartesianIndex}, indices_pre::DiskIndex, strategy::BatchStrategy
chunks::Tuple, i::Tuple{<:CartesianIndex}, indices_pre::DiskIndex, strategy::BatchStrategy
)
_resolve_indices(chunks, (Tuple(i[1])..., tail(i)...), indices_pre, strategy)
end
# This method is needed to resolve ambiguity
function _resolve_indices(
chunks::Tuple{<:Any}, i::Tuple{<:CartesianIndex}, indices_pre::DiskIndex, strategy::BatchStrategy
)
_resolve_indices(chunks, (Tuple(i[1])..., tail(i)...), indices_pre, strategy)
end
Expand Down Expand Up @@ -112,33 +146,48 @@ Calculate indices for `i` the first chunk/s in `chunks`
Returns a [`DiskIndex`](@ref), and the remaining chunks.
"""
process_index(i, chunks, ::NoBatch) = process_index(i, chunks)
function process_index(i::CartesianIndex{N}, chunks, ::NoBatch) where {N}
function process_index(i::CartesianIndex{N}, chunks::Tuple, ::NoBatch) where {N}
_, chunksrem = splitchunks(i, chunks)
di = DiskIndex((), map(one, i.I), (), (1,), map(i -> i:i, i.I))

return di, chunksrem
end
process_index(inow::Integer, chunks) =
DiskIndex((), (1,), (), (1,), (inow:inow,)), tail(chunks)
function process_index(::Colon, chunks)
s = arraysize_from_chunksize(first(chunks))
DiskIndex((s,), (s,), (Colon(),), (Colon(),), (1:s,),), tail(chunks)
di = DiskIndex((s,), (s,), (Colon(),), (Colon(),), (1:s,),)
return di, tail(chunks)
end
function process_index(i::AbstractUnitRange{<:Integer}, chunks, ::NoBatch)
DiskIndex((length(i),), (length(i),), (Colon(),), (Colon(),), (i,)), tail(chunks)
di = DiskIndex((length(i),), (length(i),), (Colon(),), (Colon(),), (i,))
return di::DiskIndex, tail(chunks)::Tuple
end
function process_index(i::AbstractArray{<:Integer}, chunks, ::NoBatch)
indmin, indmax = isempty(i) ? (1, 0) : extrema(i)
di = DiskIndex(size(i), ((indmax - indmin + 1),), map(_ -> Colon(), size(i)), ((i .- (indmin - 1)),), (indmin:indmax,))

output_size = size(i)
temparray_size = ((indmax - indmin + 1),)
output_indices = map(_ -> Colon(), size(i))
temparray_indices = ((i .- (indmin - 1)),)
data_indices = (indmin:indmax,)
di = DiskIndex(output_size, temparray_size, output_indices, temparray_indices, data_indices)

return di, tail(chunks)
end
function process_index(i::AbstractArray{Bool,N}, chunks, ::NoBatch) where {N}
chunksnow, chunksrem = splitchunks(i, chunks)
s = arraysize_from_chunksize.(chunksnow)
cindmin, cindmax = extrema(view(CartesianIndices(s), i))
indmin, indmax = cindmin.I, cindmax.I
tempsize = indmax .- indmin .+ 1
tempinds = view(i, range.(indmin, indmax)...)
di = DiskIndex((sum(i),), tempsize, (Colon(),), (tempinds,), range.(indmin, indmax))

output_size = (sum(i),)
temparray_size = map((max, min) -> max - min + 1, indmax, indmin)
output_indices = (Colon(),)
temparray_indices = (view(i, map(range, indmin, indmax)...),)
data_indices = map(range, indmin, indmax)
di = DiskIndex(output_size, temparray_size, output_indices, temparray_indices, data_indices)

return di, chunksrem
end
function process_index(i::AbstractArray{<:CartesianIndex{N}}, chunks, ::NoBatch) where {N}
Expand All @@ -151,17 +200,26 @@ function process_index(i::AbstractArray{<:CartesianIndex{N}}, chunks, ::NoBatch)
extrema(v)
end
indmin, indmax = cindmin.I, cindmax.I
tempsize = indmax .- indmin .+ 1
tempoffset = cindmin - oneunit(cindmin)
tempinds = i .- (CartesianIndex(tempoffset),)
outinds = map(_ -> Colon(), size(i))
di = DiskIndex(size(i), tempsize, outinds, (tempinds,), range.(indmin, indmax))

output_size = size(i)
temparray_size = map((max, min) -> max - min + 1, indmax, indmin)
temparray_offset = cindmin - oneunit(cindmin)
temparray_indices = (i .- (CartesianIndex(temparray_offset),),)
output_indices = map(_ -> Colon(), size(i))
data_indices = map(range, indmin, indmax)
di = DiskIndex(output_size, temparray_size, output_indices, temparray_indices, data_indices)

return di, chunksrem
end
function process_index(i::CartesianIndices{N}, chunks, ::NoBatch) where {N}
_, chunksrem = splitchunks(i, chunks)
cols = map(_ -> Colon(), i.indices)
di = DiskIndex(length.(i.indices), length.(i.indices), cols, cols, i.indices)

output_size = map(length, i.indices)
temparray_size = map(length, i.indices)
output_indices = temparray_indices = map(_ -> Colon(), i.indices)
data_indices = i.indices
di = DiskIndex(output_size, temparray_size, output_indices, temparray_indices, data_indices)

return di, chunksrem
end

Expand Down
15 changes: 14 additions & 1 deletion test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ using TraceFuns, Suppressor
# using JET
# JET.report_package(DiskArrays)

if VERSION >= v"1.9.0"
@testset "Aqua.jl" begin
Aqua.test_ambiguities([DiskArrays, Base, Core])
Aqua.test_unbound_args(DiskArrays)
Aqua.test_stale_deps(DiskArrays)
Expand Down Expand Up @@ -1087,3 +1087,16 @@ end
@test length(unique(a)) == length(unique(identity, a)) == 8
@test unique(x->x>3, a) == [1,4]
end

@testset "type stable DiskIndex" begin
a = AccessCountDiskArray(reshape(1:96, 2, 3, 4, 2, 2, 1), chunksize=(2, 2, 2, 2, 2, 1))
a_view3 = @view a[:, 1:2, 2:4, 1, 1, 1]
a_view4 = @view a[:, 1:2, 2:4, :, 1, 1]
a_view5 = @view a[:, 1:2, 2:4, :, :, 1]
a_view6 = @view a[:, 1:2, 2:4, :, :, :]

@inferred DiskArrays.DiskIndex(a_view3, (1:1, 1:1, 1:1), DiskArrays.NoBatch()) #DiskArrays.DiskIndex
@inferred DiskArrays.DiskIndex(a_view4, (1:1, 1:1, 1:1, 1:1), DiskArrays.NoBatch()) #DiskArrays.DiskIndex
@inferred DiskArrays.DiskIndex(a_view5, (1:1, 1:1, 1:1, 1:1, 1:1), DiskArrays.NoBatch()) #DiskArrays.DiskIndex
@inferred DiskArrays.DiskIndex(a_view6, (1:1, 1:1, 1:1, 1:1, 1:1, 1:1), DiskArrays.NoBatch()) #DiskArrays.DiskIndex
end
Loading