Skip to content

faster prime sieve part 1 #120

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 1 addition & 93 deletions src/Primes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,99 +12,7 @@ export isprime, primes, primesmask, factor, eachfactor, divisors, ismersenneprim
nextprime, nextprimes, prevprime, prevprimes, prime, prodfactors, radical, totient

include("factorization.jl")

# Primes generating functions
# https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
# https://en.wikipedia.org/wiki/Wheel_factorization
# http://primesieve.org
# Jonathan Sorenson, "An analysis of two prime number sieves", Computer Science Technical Report Vol. 1028, 1991
const wheel = [4, 2, 4, 2, 4, 6, 2, 6]
const wheel_primes = [7, 11, 13, 17, 19, 23, 29, 31]
const wheel_indices = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7]

@inline function wheel_index(n)
d, r = divrem(n - 1, 30)
return 8d + wheel_indices[r + 2]
end
@inline function wheel_prime(n)
d, r = (n - 1) >>> 3, (n - 1) & 7
return 30d + wheel_primes[r + 1]
end

function _primesmask(limit::Int)
limit < 7 && throw(ArgumentError("The condition limit ≥ 7 must be met."))
n = wheel_index(limit)
m = wheel_prime(n)
sieve = ones(Bool, n)
@inbounds for i = 1:wheel_index(isqrt(limit))
if sieve[i]
p = wheel_prime(i)
q = p^2
j = (i - 1) & 7 + 1
while q ≤ m
sieve[wheel_index(q)] = false
q += wheel[j] * p
j = j & 7 + 1
end
end
end
return sieve
end

function _primesmask(lo::Int, hi::Int)
7 ≤ lo ≤ hi || throw(ArgumentError("The condition 7 ≤ lo ≤ hi must be met."))
lo == 7 && return _primesmask(hi)
wlo, whi = wheel_index(lo - 1), wheel_index(hi)
m = wheel_prime(whi)
sieve = ones(Bool, whi - wlo)
hi < 49 && return sieve
small_sieve = _primesmask(isqrt(hi))
@inbounds for i = 1:length(small_sieve) # don't use eachindex here
if small_sieve[i]
p = wheel_prime(i)
j = wheel_index(2 * div(lo - p - 1, 2p) + 1)
r = widemul(p, wheel_prime(j + 1))
r > m && continue # use widemul to avoid r <= m caused by overflow
j = j & 7 + 1
q = Int(r)
# q < 0 indicates overflow when incrementing q inside loop
while 0 ≤ q ≤ m
sieve[wheel_index(q) - wlo] = false
q += wheel[j] * p
j = j & 7 + 1
end
end
end
return sieve
end

"""
primesmask([lo,] hi)

Returns a prime sieve, as a `BitArray`, of the positive integers (from `lo`, if specified)
up to `hi`. Useful when working with either primes or composite numbers.
"""
function primesmask(lo::Int, hi::Int)
0 < lo ≤ hi || throw(ArgumentError("The condition 0 < lo ≤ hi must be met."))
sieve = falses(hi - lo + 1)
lo ≤ 2 ≤ hi && (sieve[3 - lo] = true)
lo ≤ 3 ≤ hi && (sieve[4 - lo] = true)
lo ≤ 5 ≤ hi && (sieve[6 - lo] = true)
hi < 7 && return sieve
wheel_sieve = _primesmask(max(7, lo), hi)
lsi = lo - 1
lwi = wheel_index(lsi)
@inbounds for i = 1:length(wheel_sieve) # don't use eachindex here
sieve[wheel_prime(i + lwi) - lsi] = wheel_sieve[i]
end
return sieve
end
primesmask(lo::Integer, hi::Integer) = lo ≤ hi ≤ typemax(Int) ? primesmask(Int(lo), Int(hi)) :
throw(ArgumentError("Both endpoints of the interval to sieve must be ≤ $(typemax(Int)), got $lo and $hi."))

primesmask(limit::Int) = primesmask(1, limit)
primesmask(n::Integer) = n ≤ typemax(Int) ? primesmask(Int(n)) :
throw(ArgumentError("Requested number of primes must be ≤ $(typemax(Int)), got $n."))
include("sieve.jl")

"""
primes([lo,] hi)
Expand Down
117 changes: 117 additions & 0 deletions src/sieve.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
# Primes generating functions
# https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
# https://en.wikipedia.org/wiki/Wheel_factorization
# http://primesieve.org
# Jonathan Sorenson, "An analysis of two prime number sieves", Computer Science Technical Report Vol. 1028, 1991
const wheel = (4, 2, 4, 2, 4, 6, 2, 6)
const wheel_primes = (7, 11, 13, 17, 19, 23, 29, 31)
const wheel_indices = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7)

@inline function wheel_index(n)
d, r = divrem(n - 1, 30)
return 8d + wheel_indices[r + 2]
end
@inline function wheel_prime(n)
d, r = (n - 1) >>> 3, (n - 1) & 7
return 30d + wheel_primes[r + 1]
end

# `wheel_prime(x)%p` is periodic every `8p` (8 because `wheel` has 8 elements)
# Therefore, it is also periodic every `64p`.
# Since a `BitVector` stores `UInt64` chunks, each prime has the same effect every `p` chunks.
# Since prime `p` modifies `1/p` bits, small primes<64 modify more than 1 bit per UInt64
# which makes it worth it to sieve them 1 chunk at a time.
const PRESIEVE_PRIMES = (7,11,13,17,19)
const PRESIEVE_CHUNKS = Vector{Vector{UInt64}}(undef, length(PRESIEVE_PRIMES))
for (i,p) in enumerate(PRESIEVE_PRIMES)
PRESIEVE_CHUNKS[i] = BitVector([wheel_prime(x)%p!=0 for x in 1:(64*p)]).chunks
end

function _primesmask(limit::Int)
limit < 7 && throw(ArgumentError("The condition limit ≥ 7 must be met."))
n = wheel_index(limit)
m = wheel_prime(n)
sieve = BitVector(undef,n)
# First sieve small primes 64 bits at a time.
# Loop order here is slightly more computation, but reduces passes over memory
@inbounds for i in eachindex(sieve.chunks)
presieve_mask = ~UInt64(0)
for (j,p) in enumerate(PRESIEVE_PRIMES)
presieve_mask &= PRESIEVE_CHUNKS[j][(i-1) % p + 1]
end
sieve.chunks[i] = presieve_mask
end
# undo the fact that presieving sets the `PRESIEVE_PRIMES` to `false`
# 0x1f is the bitmask for setting sieve[1:5] to true (and doesn't need to check the length of sieve)
sieve.chunks[1] |= 0x1f

# Then sieve remaining primes 1 match at a time.
@inbounds for i = (length(PRESIEVE_PRIMES)+1):wheel_index(isqrt(limit))
if sieve[i]
p = wheel_prime(i)
q = p^2
j = (i - 1) & 7 + 1
while q ≤ m
sieve[wheel_index(q)] = false
q += wheel[j] * p
j = j & 7 + 1
end
end
end
return sieve
end

function _primesmask(lo::Int, hi::Int)
7 ≤ lo ≤ hi || throw(ArgumentError("The condition 7 ≤ lo ≤ hi must be met."))
lo == 7 && return _primesmask(hi)
wlo, whi = wheel_index(lo - 1), wheel_index(hi)
m = wheel_prime(whi)
sieve = ones(Bool, whi - wlo)
hi < 49 && return sieve
small_sieve = _primesmask(isqrt(hi))
@inbounds for i = 1:length(small_sieve) # don't use eachindex here
if small_sieve[i]
p = wheel_prime(i)
j = wheel_index(2 * div(lo - p - 1, 2p) + 1)
r = widemul(p, wheel_prime(j + 1))
r > m && continue # use widemul to avoid r <= m caused by overflow
j = j & 7 + 1
q = Int(r)
# q < 0 indicates overflow when incrementing q inside loop
while 0 ≤ q ≤ m
sieve[wheel_index(q) - wlo] = false
q += wheel[j] * p
j = j & 7 + 1
end
end
end
return sieve
end

"""
primesmask([lo,] hi)

Returns a prime sieve, as a `BitArray`, of the positive integers (from `lo`, if specified)
up to `hi`. Useful when working with either primes or composite numbers.
"""
function primesmask(lo::Int, hi::Int)
0 < lo ≤ hi || throw(ArgumentError("The condition 0 < lo ≤ hi must be met."))
sieve = falses(hi - lo + 1)
lo ≤ 2 ≤ hi && (sieve[3 - lo] = true)
lo ≤ 3 ≤ hi && (sieve[4 - lo] = true)
lo ≤ 5 ≤ hi && (sieve[6 - lo] = true)
hi < 7 && return sieve
wheel_sieve = _primesmask(max(7, lo), hi)
lsi = lo - 1
lwi = wheel_index(lsi)
@inbounds for i = 1:length(wheel_sieve) # don't use eachindex here
sieve[wheel_prime(i + lwi) - lsi] = wheel_sieve[i]
end
return sieve
end
primesmask(lo::Integer, hi::Integer) = lo ≤ hi ≤ typemax(Int) ? primesmask(Int(lo), Int(hi)) :
throw(ArgumentError("Both endpoints of the interval to sieve must be ≤ $(typemax(Int)), got $lo and $hi."))

primesmask(limit::Int) = primesmask(1, limit)
primesmask(n::Integer) = n ≤ typemax(Int) ? primesmask(Int(n)) :
throw(ArgumentError("Requested number of primes must be ≤ $(typemax(Int)), got $n."))