Skip to content

Commit 8b0696d

Browse files
PaulXiCaosimonbyrne
authored andcommitted
regrouped function list accoring to nist chapters (#176)
1 parent 186b6c7 commit 8b0696d

File tree

1 file changed

+41
-34
lines changed

1 file changed

+41
-34
lines changed

docs/src/functions_overview.md

Lines changed: 41 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,36 @@
11
# Functions
22
Here the *Special Functions* are listed according to the structure of [NIST Digital Library of Mathematical Functions](https://dlmf.nist.gov/).
33

4-
## Error Functions, Dawson’s and Fresnel Integrals
54

5+
## [Gamma Function](https://dlmf.nist.gov/5)
6+
| Function | Description |
7+
|:-------- |:----------- |
8+
| [`gamma(z)`](@ref SpecialFunctions.gamma) | [gamma function](https://en.wikipedia.org/wiki/Gamma_function) ``\Gamma(z)`` |
9+
| [`digamma(x)`](@ref SpecialFunctions.digamma) | [digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `lgamma` at `x`) |
10+
| [`invdigamma(x)`](@ref SpecialFunctions.invdigamma) | [invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
11+
| [`trigamma(x)`](@ref SpecialFunctions.trigamma) | [trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
12+
| [`polygamma(m,x)`](@ref SpecialFunctions.polygamma) | [polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `lgamma` function at `x`) |
13+
| [`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) | [incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q)) |
14+
| [`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) | [incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
15+
| [`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) | [inverse of incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given P(a,x)=p and Q(a,x)=q |
16+
| [`loggamma(x)`](@ref SpecialFunctions.loggamma) | accurate `log(gamma(x))` for large `x` |
17+
| [`logabsgamma(x)`](@ref SpecialFunctions.logabsgamma) | accurate `log(abs(gamma(x)))` for large `x` |
18+
| [`lgamma(x)`](@ref SpecialFunctions.lgamma) | accurate `log(gamma(x))` for large `x` |
19+
| [`logfactorial(x)`](@ref SpecialFunctions.logfactorial) | accurate `log(factorial(x))` for large `x`; same as `lgamma(x+1)` for `x > 1`, zero otherwise |
20+
| [`beta(x,y)`](@ref SpecialFunctions.beta) | [beta function](https://en.wikipedia.org/wiki/Beta_function) at `x,y` |
21+
| [`logbeta(x,y)`](@ref SpecialFunctions.logbeta) | accurate `log(beta(x,y))` for large `x` or `y` |
22+
| [`logabsbeta(x,y)`](@ref SpecialFunctions.logabsbeta) | accurate `log(abs(beta(x,y)))` for large `x` or `y` |
23+
| [`logabsbinomial(x,y)`](@ref SpecialFunctions.logabsbinomial) | accurate `log(abs(beta(x,y)))` for large `x` or `y` |
24+
25+
26+
## [Trigonometric Integrals](https://dlmf.nist.gov/6)
27+
| Function | Description |
28+
|:-------- |:----------- |
29+
| [`sinint(x)`](@ref SpecialFunctions.sinint) | [sine integral](https://en.wikipedia.org/wiki/Trigonometric_integral#Sine_integral) ``Si(x)`` |
30+
| [`cosint(x)`](@ref SpecialFunctions.cosint) | [cosine integral](https://en.wikipedia.org/wiki/Trigonometric_integral#Cosine_integral) ``Ci(x)`` |
31+
32+
33+
## [Error Functions, Dawson’s and Fresnel Integrals](https://dlmf.nist.gov/7)
634
| Function | Description |
735
|:-------- |:----------- |
836
| [`erf(x)`](@ref SpecialFunctions.erf) | [error function](https://en.wikipedia.org/wiki/Error_function) at ``x`` |
@@ -14,27 +42,18 @@ Here the *Special Functions* are listed according to the structure of [NIST Digi
1442
| [`dawson(x)`](@ref SpecialFunctions.dawson) | scaled imaginary error function, a.k.a. Dawson function, i.e. accurate ``\frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x)`` for large ``x`` |
1543

1644

17-
## Elliptic Integrals
18-
19-
| Function | Description |
20-
|:-------- |:----------- |
21-
| [`ellipk(m)`](@ref SpecialFunctions.ellipk) | [complete elliptic integral of 1st kind](https://en.wikipedia.org/wiki/Elliptic_integral#Notational_variants) ``K(m)`` |
22-
| [`ellipe(m)`](@ref SpecialFunctions.ellipe) | [complete elliptic integral of 2nd kind](https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_second_kind) ``E(m)`` |
23-
24-
## Trigonometric Integrals
25-
| Function | Description |
26-
|:-------- |:----------- |
27-
| [`sinint(x)`](@ref SpecialFunctions.sinint) | [sine integral](https://en.wikipedia.org/wiki/Trigonometric_integral#Sine_integral) ``Si(x)`` |
28-
| [`cosint(x)`](@ref SpecialFunctions.cosint) | [cosine integral](https://en.wikipedia.org/wiki/Trigonometric_integral#Cosine_integral) ``Ci(x)`` |
29-
30-
## Airy, Bessel and Hankel Functions
45+
## [Airy and Related Functions](https://dlmf.nist.gov/9)
3146
| Function | Description |
3247
|:-------- |:----------- |
3348
| [`airyai(z)`](@ref SpecialFunctions.airyai) | [Airy Ai function](https://en.wikipedia.org/wiki/Airy_function) at `z` |
3449
| [`airyaiprime(z)`](@ref SpecialFunctions.airyaiprime) | derivative of the Airy Ai function at `z` |
3550
| [`airybi(z)`](@ref SpecialFunctions.airybi) | [Airy Bi function](https://en.wikipedia.org/wiki/Airy_function) at `z` |
3651
| [`airybiprime(z)`](@ref SpecialFunctions.airybiprime) | derivative of the Airy Bi function at `z` |
37-
| [`airyaix(z)`](@ref SpecialFunctions.airyaix), [`airyaiprimex(z)`](@ref SpecialFunctions.airyaiprimex), [`airybix(z)`](@ref SpecialFunctions.airybix), [`airybiprimex(z)`](@ref SpecialFunctions.airybiprimex) | scaled Airy Ai function and `k`th derivatives at `z` |
52+
| [`airyaix(z)`](@ref SpecialFunctions.airyaix), [`airyaiprimex(z)`](@ref SpecialFunctions.airyaiprimex), [`airybix(z)`](@ref SpecialFunctions.airybix), [`airybiprimex(z)`](@ref SpecialFunctions.airybiprimex) | scaled Airy Ai function and `k`th derivatives at `z` |
53+
54+
## [Bessel Functions](https://dlmf.nist.gov/10)
55+
| Function | Description |
56+
|:-------- |:----------- |
3857
| [`besselj(nu,z)`](@ref SpecialFunctions.besselj) | [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind of order `nu` at `z` |
3958
| [`besselj0(z)`](@ref SpecialFunctions.besselj0) | `besselj(0,z)` |
4059
| [`besselj1(z)`](@ref SpecialFunctions.besselj1) | `besselj(1,z)` |
@@ -53,27 +72,15 @@ Here the *Special Functions* are listed according to the structure of [NIST Digi
5372
| [`besselk(nu,z)`](@ref SpecialFunctions.besselk) | modified [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind of order `nu` at `z` |
5473
| [`besselkx(nu,z)`](@ref SpecialFunctions.besselkx) | scaled modified Bessel function of the second kind of order `nu` at `z` |
5574

56-
## Gamma and related functions
75+
76+
## [Elliptic Integrals](https://dlmf.nist.gov/19)
5777
| Function | Description |
5878
|:-------- |:----------- |
59-
| [`gamma(z)`](@ref SpecialFunctions.gamma) | [gamma function](https://en.wikipedia.org/wiki/Gamma_function) ``\Gamma(z)`` |
60-
| [`digamma(x)`](@ref SpecialFunctions.digamma) | [digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `lgamma` at `x`) |
61-
| [`invdigamma(x)`](@ref SpecialFunctions.invdigamma) | [invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
62-
| [`trigamma(x)`](@ref SpecialFunctions.trigamma) | [trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
63-
| [`polygamma(m,x)`](@ref SpecialFunctions.polygamma) | [polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `lgamma` function at `x`) |
64-
| [`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) | [incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q)) |
65-
| [`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) | [incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
66-
| [`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) | [inverse of incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given P(a,x)=p and Q(a,x)=q |
67-
| [`loggamma(x)`](@ref SpecialFunctions.loggamma) | accurate `log(gamma(x))` for large `x` |
68-
| [`logabsgamma(x)`](@ref SpecialFunctions.logabsgamma) | accurate `log(abs(gamma(x)))` for large `x` |
69-
| [`lgamma(x)`](@ref SpecialFunctions.lgamma) | accurate `log(gamma(x))` for large `x` |
70-
| [`logfactorial(x)`](@ref SpecialFunctions.logfactorial) | accurate `log(factorial(x))` for large `x`; same as `lgamma(x+1)` for `x > 1`, zero otherwise |
71-
| [`beta(x,y)`](@ref SpecialFunctions.beta) | [beta function](https://en.wikipedia.org/wiki/Beta_function) at `x,y` |
72-
| [`logbeta(x,y)`](@ref SpecialFunctions.logbeta) | accurate `log(beta(x,y))` for large `x` or `y` |
73-
| [`logabsbeta(x,y)`](@ref SpecialFunctions.logabsbeta) | accurate `log(abs(beta(x,y)))` for large `x` or `y` |
74-
| [`logabsbinomial(x,y)`](@ref SpecialFunctions.logabsbinomial) | accurate `log(abs(beta(x,y)))` for large `x` or `y` |
79+
| [`ellipk(m)`](@ref SpecialFunctions.ellipk) | [complete elliptic integral of 1st kind](https://en.wikipedia.org/wiki/Elliptic_integral#Notational_variants) ``K(m)`` |
80+
| [`ellipe(m)`](@ref SpecialFunctions.ellipe) | [complete elliptic integral of 2nd kind](https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_second_kind) ``E(m)`` |
81+
7582

76-
## Riemann Zeta and related functions
83+
## [Zeta and Related Functions](https://dlmf.nist.gov/25)
7784
| Function | Description |
7885
|:-------- |:----------- |
7986
| [`eta(x)`](@ref SpecialFunctions.eta) | [Dirichlet eta function](https://en.wikipedia.org/wiki/Dirichlet_eta_function) at `x` |

0 commit comments

Comments
 (0)