You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[`digamma(x)`](@ref SpecialFunctions.digamma) |[digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `lgamma` at `x`) |
10
+
|[`invdigamma(x)`](@ref SpecialFunctions.invdigamma) |[invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
11
+
|[`trigamma(x)`](@ref SpecialFunctions.trigamma) |[trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
12
+
|[`polygamma(m,x)`](@ref SpecialFunctions.polygamma) |[polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `lgamma` function at `x`) |
13
+
|[`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) |[incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q)) |
14
+
|[`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) |[incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
15
+
|[`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) |[inverse of incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given P(a,x)=p and Q(a,x)=q |
16
+
|[`loggamma(x)`](@ref SpecialFunctions.loggamma) | accurate `log(gamma(x))` for large `x`|
17
+
|[`logabsgamma(x)`](@ref SpecialFunctions.logabsgamma) | accurate `log(abs(gamma(x)))` for large `x`|
18
+
|[`lgamma(x)`](@ref SpecialFunctions.lgamma) | accurate `log(gamma(x))` for large `x`|
19
+
|[`logfactorial(x)`](@ref SpecialFunctions.logfactorial) | accurate `log(factorial(x))` for large `x`; same as `lgamma(x+1)` for `x > 1`, zero otherwise |
20
+
|[`beta(x,y)`](@ref SpecialFunctions.beta) |[beta function](https://en.wikipedia.org/wiki/Beta_function) at `x,y`|
21
+
|[`logbeta(x,y)`](@ref SpecialFunctions.logbeta) | accurate `log(beta(x,y))` for large `x` or `y`|
22
+
|[`logabsbeta(x,y)`](@ref SpecialFunctions.logabsbeta) | accurate `log(abs(beta(x,y)))` for large `x` or `y`|
23
+
|[`logabsbinomial(x,y)`](@ref SpecialFunctions.logabsbinomial) | accurate `log(abs(beta(x,y)))` for large `x` or `y`|
## [Error Functions, Dawson’s and Fresnel Integrals](https://dlmf.nist.gov/7)
6
34
| Function | Description |
7
35
|:-------- |:----------- |
8
36
|[`erf(x)`](@ref SpecialFunctions.erf) |[error function](https://en.wikipedia.org/wiki/Error_function) at ``x``|
@@ -14,27 +42,18 @@ Here the *Special Functions* are listed according to the structure of [NIST Digi
14
42
|[`dawson(x)`](@ref SpecialFunctions.dawson) | scaled imaginary error function, a.k.a. Dawson function, i.e. accurate ``\frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x)`` for large ``x``|
15
43
16
44
17
-
## Elliptic Integrals
18
-
19
-
| Function | Description |
20
-
|:-------- |:----------- |
21
-
|[`ellipk(m)`](@ref SpecialFunctions.ellipk) |[complete elliptic integral of 1st kind](https://en.wikipedia.org/wiki/Elliptic_integral#Notational_variants)``K(m)``|
22
-
|[`ellipe(m)`](@ref SpecialFunctions.ellipe) |[complete elliptic integral of 2nd kind](https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_second_kind)``E(m)``|
## [Airy and Related Functions](https://dlmf.nist.gov/9)
31
46
| Function | Description |
32
47
|:-------- |:----------- |
33
48
|[`airyai(z)`](@ref SpecialFunctions.airyai) |[Airy Ai function](https://en.wikipedia.org/wiki/Airy_function) at `z`|
34
49
|[`airyaiprime(z)`](@ref SpecialFunctions.airyaiprime) | derivative of the Airy Ai function at `z`|
35
50
|[`airybi(z)`](@ref SpecialFunctions.airybi) |[Airy Bi function](https://en.wikipedia.org/wiki/Airy_function) at `z`|
36
51
|[`airybiprime(z)`](@ref SpecialFunctions.airybiprime) | derivative of the Airy Bi function at `z`|
37
-
|[`airyaix(z)`](@ref SpecialFunctions.airyaix), [`airyaiprimex(z)`](@ref SpecialFunctions.airyaiprimex), [`airybix(z)`](@ref SpecialFunctions.airybix), [`airybiprimex(z)`](@ref SpecialFunctions.airybiprimex) | scaled Airy Ai function and `k`th derivatives at `z`|
52
+
|[`airyaix(z)`](@ref SpecialFunctions.airyaix), [`airyaiprimex(z)`](@ref SpecialFunctions.airyaiprimex), [`airybix(z)`](@ref SpecialFunctions.airybix), [`airybiprimex(z)`](@ref SpecialFunctions.airybiprimex) | scaled Airy Ai function and `k`th derivatives at `z`|
53
+
54
+
## [Bessel Functions](https://dlmf.nist.gov/10)
55
+
| Function | Description |
56
+
|:-------- |:----------- |
38
57
|[`besselj(nu,z)`](@ref SpecialFunctions.besselj) |[Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind of order `nu` at `z`|
@@ -53,27 +72,15 @@ Here the *Special Functions* are listed according to the structure of [NIST Digi
53
72
|[`besselk(nu,z)`](@ref SpecialFunctions.besselk) | modified [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind of order `nu` at `z`|
54
73
|[`besselkx(nu,z)`](@ref SpecialFunctions.besselkx) | scaled modified Bessel function of the second kind of order `nu` at `z`|
|[`digamma(x)`](@ref SpecialFunctions.digamma) |[digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `lgamma` at `x`) |
61
-
|[`invdigamma(x)`](@ref SpecialFunctions.invdigamma) |[invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
62
-
|[`trigamma(x)`](@ref SpecialFunctions.trigamma) |[trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
63
-
|[`polygamma(m,x)`](@ref SpecialFunctions.polygamma) |[polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `lgamma` function at `x`) |
64
-
|[`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) |[incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q)) |
65
-
|[`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) |[incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
66
-
|[`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) |[inverse of incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given P(a,x)=p and Q(a,x)=q |
67
-
|[`loggamma(x)`](@ref SpecialFunctions.loggamma) | accurate `log(gamma(x))` for large `x`|
68
-
|[`logabsgamma(x)`](@ref SpecialFunctions.logabsgamma) | accurate `log(abs(gamma(x)))` for large `x`|
69
-
|[`lgamma(x)`](@ref SpecialFunctions.lgamma) | accurate `log(gamma(x))` for large `x`|
70
-
|[`logfactorial(x)`](@ref SpecialFunctions.logfactorial) | accurate `log(factorial(x))` for large `x`; same as `lgamma(x+1)` for `x > 1`, zero otherwise |
71
-
|[`beta(x,y)`](@ref SpecialFunctions.beta) |[beta function](https://en.wikipedia.org/wiki/Beta_function) at `x,y`|
72
-
|[`logbeta(x,y)`](@ref SpecialFunctions.logbeta) | accurate `log(beta(x,y))` for large `x` or `y`|
73
-
|[`logabsbeta(x,y)`](@ref SpecialFunctions.logabsbeta) | accurate `log(abs(beta(x,y)))` for large `x` or `y`|
74
-
|[`logabsbinomial(x,y)`](@ref SpecialFunctions.logabsbinomial) | accurate `log(abs(beta(x,y)))` for large `x` or `y`|
79
+
|[`ellipk(m)`](@ref SpecialFunctions.ellipk) |[complete elliptic integral of 1st kind](https://en.wikipedia.org/wiki/Elliptic_integral#Notational_variants)``K(m)``|
80
+
|[`ellipe(m)`](@ref SpecialFunctions.ellipe) |[complete elliptic integral of 2nd kind](https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_second_kind)``E(m)``|
81
+
75
82
76
-
## Riemann Zeta and related functions
83
+
## [Zeta and Related Functions](https://dlmf.nist.gov/25)
77
84
| Function | Description |
78
85
|:-------- |:----------- |
79
86
|[`eta(x)`](@ref SpecialFunctions.eta) |[Dirichlet eta function](https://en.wikipedia.org/wiki/Dirichlet_eta_function) at `x`|
0 commit comments