Skip to content

Commit cc83f64

Browse files
committed
Minor docstring fixes
1 parent d99ec12 commit cc83f64

File tree

4 files changed

+9
-9
lines changed

4 files changed

+9
-9
lines changed

docs/src/functions_overview.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -15,17 +15,17 @@ Here the *Special Functions* are listed according to the structure of [NIST Digi
1515
| [`digamma(x)`](@ref SpecialFunctions.digamma) | [digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `loggamma` at `x`) |
1616
| [`invdigamma(x)`](@ref SpecialFunctions.invdigamma) | [invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
1717
| [`trigamma(x)`](@ref SpecialFunctions.trigamma) | [trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
18-
| [`polygamma(m,x)`](@ref SpecialFunctions.polygamma) | [polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `loggamma` function at `x`) |
18+
| [`polygamma(m,x)`](@ref SpecialFunctions.polygamma) | [polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the ``(m+1)``-th derivative of the `loggamma` function at `x`) |
1919
| [`gamma(a,z)`](@ref SpecialFunctions.gamma(::Number,::Number)) | [upper incomplete gamma function ``\Gamma(a,z)``](https://en.wikipedia.org/wiki/Incomplete_gamma_function) |
2020
| [`loggamma(a,z)`](@ref SpecialFunctions.loggamma(::Number,::Number)) | accurate `log(gamma(a,x))` for large arguments |
21-
| [`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) | [incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates P(a,x) and Q(a,x) for accuracy specified by IND and returns tuple (p,q)) |
22-
| [`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) | [inverse of incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given P(a,x)=p and Q(a,x)=q) |
21+
| [`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) | [incomplete gamma function ratio ``P(a,x)`` and ``Q(a,x)``](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates ``P(a,x)`` and ``Q(a,x)`` for accuracy specified by IND and returns tuple (p,q)) |
22+
| [`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) | [inverse of incomplete gamma function ratio ``P(a,x)`` and ``Q(a,x)``](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given ``P(a,x)=p`` and ``Q(a,x)=q``) |
2323
| [`beta(x,y)`](@ref SpecialFunctions.beta) | [beta function](https://en.wikipedia.org/wiki/Beta_function) at `x,y` |
2424
| [`logbeta(x,y)`](@ref SpecialFunctions.logbeta) | accurate `log(beta(x,y))` for large `x` or `y` |
2525
| [`logabsbeta(x,y)`](@ref SpecialFunctions.logabsbeta) | accurate `log(abs(beta(x,y)))` for large `x` or `y` |
2626
| [`logabsbinomial(x,y)`](@ref SpecialFunctions.logabsbinomial) | accurate `log(abs(binomial(n,k)))` for large `n` and `k` near `n/2` |
27-
| [`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) | [incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
28-
| [`beta_inc_inv(a,b,p,q)`](@ref SpecialFunctions.beta_inc_inv) | Inverse of the incomplete beta function (i.e evaluates x given ``I_{x}(a, b) = p``) |
27+
| [`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) | [incomplete beta function ratio ``I_x(a,b)`` and ``I_y(a,b)``](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates ``I_x(a,b)`` and ``I_y(a,b)`` and returns tuple (p,q)) |
28+
| [`beta_inc_inv(a,b,p,q)`](@ref SpecialFunctions.beta_inc_inv) | Inverse of the incomplete beta function (i.e evaluates ``x`` given ``I_{x}(a, b) = p``) |
2929

3030

3131
## Exponential and Trigonometric Integrals

src/bessel.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -760,7 +760,7 @@ end
760760
"""
761761
sphericalbesselj(nu, x)
762762
763-
Spherical bessel function of the first kind at order `nu`, ``j_ν(x)``. This is the non-singular
763+
Spherical Bessel function of the first kind at order `nu`, ``j_ν(x)``. This is the non-singular
764764
solution to the radial part of the Helmholz equation in spherical coordinates.
765765
"""
766766
function sphericalbesselj(nu, x::T) where {T}
@@ -775,7 +775,7 @@ end
775775
"""
776776
sphericalbessely(nu, x)
777777
778-
Spherical bessel function of the second kind at order `nu`, ``y_ν(x)``. This is
778+
Spherical Bessel function of the second kind at order `nu`, ``y_ν(x)``. This is
779779
the singular solution to the radial part of the Helmholz equation in spherical
780780
coordinates. Sometimes known as a spherical Neumann function.
781781
"""

src/gamma.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -227,7 +227,7 @@ Generalized zeta function defined by
227227
```math
228228
\zeta(s, z) = \sum_{k=0}^\infty \frac{1}{((k+z)^2)^{s/2}},
229229
```
230-
where any term with ``k+z = 0`` is excluded. For ``\Re z > 0``,
230+
where any term with ``k+z = 0`` is excluded. For ``\Re(z) > 0``,
231231
this definition is equivalent to the Hurwitz zeta function
232232
``\sum_{k=0}^\infty (k+z)^{-s}``.
233233

src/gamma_inc.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -543,7 +543,7 @@ end
543543
@doc raw"""
544544
gamma_inc_minimax(a,x,z)
545545
546-
Compute ``P(a,x)`` using minimax approximations given by :
546+
Compute ``P(a,x)`` using minimax approximations given by:
547547
```math
548548
1/2 * \operatorname{erfc}(\sqrt{y}) - e^{-y}/\sqrt{2\pi a} ⋅ T(a,\lambda)
549549
``` where

0 commit comments

Comments
 (0)