You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/src/functions_overview.md
+5-5Lines changed: 5 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -15,17 +15,17 @@ Here the *Special Functions* are listed according to the structure of [NIST Digi
15
15
|[`digamma(x)`](@ref SpecialFunctions.digamma) |[digamma function](https://en.wikipedia.org/wiki/Digamma_function) (i.e. the derivative of `loggamma` at `x`) |
16
16
|[`invdigamma(x)`](@ref SpecialFunctions.invdigamma) |[invdigamma function](http://bariskurt.com/calculating-the-inverse-of-digamma-function/) (i.e. inverse of `digamma` function at `x` using fixed-point iteration algorithm) |
17
17
|[`trigamma(x)`](@ref SpecialFunctions.trigamma) |[trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) (i.e the logarithmic second derivative of `gamma` at `x`) |
18
-
|[`polygamma(m,x)`](@ref SpecialFunctions.polygamma) |[polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the (m+1)-th derivative of the `loggamma` function at `x`) |
18
+
|[`polygamma(m,x)`](@ref SpecialFunctions.polygamma) |[polygamma function](https://en.wikipedia.org/wiki/Polygamma_function) (i.e the ``(m+1)``-th derivative of the `loggamma` function at `x`) |
19
19
|[`gamma(a,z)`](@ref SpecialFunctions.gamma(::Number,::Number)) |[upper incomplete gamma function ``\Gamma(a,z)``](https://en.wikipedia.org/wiki/Incomplete_gamma_function)|
20
20
|[`loggamma(a,z)`](@ref SpecialFunctions.loggamma(::Number,::Number)) | accurate `log(gamma(a,x))` for large arguments |
21
-
|[`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) |[incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates P(a,x) and Q(a,x) for accuracy specified by IND and returns tuple (p,q)) |
22
-
|[`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) |[inverse of incomplete gamma function ratio P(a,x) and Q(a,x)](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given P(a,x)=p and Q(a,x)=q) |
21
+
|[`gamma_inc(a,x,IND)`](@ref SpecialFunctions.gamma_inc) |[incomplete gamma function ratio ``P(a,x)`` and ``Q(a,x)``](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates ``P(a,x)`` and ``Q(a,x)`` for accuracy specified by IND and returns tuple (p,q)) |
22
+
|[`gamma_inc_inv(a,p,q)`](@ref SpecialFunctions.gamma_inc_inv) |[inverse of incomplete gamma function ratio ``P(a,x)`` and ``Q(a,x)``](https://en.wikipedia.org/wiki/Incomplete_gamma_function) (i.e evaluates x given ``P(a,x)=p`` and ``Q(a,x)=q``) |
23
23
|[`beta(x,y)`](@ref SpecialFunctions.beta) |[beta function](https://en.wikipedia.org/wiki/Beta_function) at `x,y`|
24
24
|[`logbeta(x,y)`](@ref SpecialFunctions.logbeta) | accurate `log(beta(x,y))` for large `x` or `y`|
25
25
|[`logabsbeta(x,y)`](@ref SpecialFunctions.logabsbeta) | accurate `log(abs(beta(x,y)))` for large `x` or `y`|
26
26
|[`logabsbinomial(x,y)`](@ref SpecialFunctions.logabsbinomial) | accurate `log(abs(binomial(n,k)))` for large `n` and `k` near `n/2`|
27
-
|[`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) |[incomplete beta function ratio Ix(a,b) and Iy(a,b)](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q))|
28
-
|[`beta_inc_inv(a,b,p,q)`](@ref SpecialFunctions.beta_inc_inv) | Inverse of the incomplete beta function (i.e evaluates x given ``I_{x}(a, b) = p``) |
27
+
|[`beta_inc(a,b,x,y)`](@ref SpecialFunctions.beta_inc) |[incomplete beta function ratio ``I_x(a,b)`` and ``I_y(a,b)``](https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function) (i.e evaluates ``I_x(a,b)`` and ``I_y(a,b)`` and returns tuple (p,q)) |
28
+
|[`beta_inc_inv(a,b,p,q)`](@ref SpecialFunctions.beta_inc_inv) | Inverse of the incomplete beta function (i.e evaluates ``x`` given ``I_{x}(a, b) = p``) |
0 commit comments