@@ -7,15 +7,12 @@ abstract type PackedInferenceType end
7
7
8
8
abstract type FunctorInferenceType <: Function end
9
9
10
- # DF suggestion1 (this is a first guess) `ConvolutionObject` --> `FactorInsituObject`
11
- # DF second guess, ConvolutionObject <: FactorInsituObject
12
- # JT Maybe second guess as intermediate step where ConvolutionObject is moved to IIF.
13
- # then it can be removed to CommonConvWrapper <: FactorInsituObject
14
-
15
- # DF, Convolution is IIF idea, but DFG should know about "FactorOperationalMemory"
16
- # DF, IIF.CommonConvWrapper <: FactorOperationalMemory # FIXME
17
- # MAYBE rename "FactorOperationalMemory"
18
- abstract type ConvolutionObject <: Function end
10
+ # NOTE DF, Convolution is IIF idea, but DFG should know about "FactorOperationalMemory"
11
+ # DF, IIF.CommonConvWrapper <: FactorOperationalMemory #
12
+ abstract type FactorOperationalMemory <: Function end
13
+ # TODO to be removed from DFG,
14
+ # we can add to IIF or have IIF.CommonConvWrapper <: FactorOperationalMemory directly
15
+ abstract type ConvolutionObject <: FactorOperationalMemory end
19
16
20
17
abstract type FunctorSingleton <: FunctorInferenceType end
21
18
abstract type FunctorPairwise <: FunctorInferenceType end
@@ -37,7 +34,7 @@ Designing (WIP)
37
34
# in IIF.FunctorPairwiseMinimize <: InferenceType # DFG whatever, something, we'll figure it out
38
35
# in Main/User, SomeFactor <: FunctorPairwiseMinimize
39
36
"""
40
- mutable struct GenericFunctionNodeData{T, S} # {T<:Union{PackedInferenceType, FunctorInferenceType, ConvolutionObject }, S<:Union{Symbol, AbstractString}}
37
+ mutable struct GenericFunctionNodeData{T, S} # {T<:Union{PackedInferenceType, FunctorInferenceType, FactorOperationalMemory }, S<:Union{Symbol, AbstractString}}
41
38
fncargvID:: Vector{Symbol}
42
39
eliminated:: Bool
43
40
potentialused:: Bool
62
59
const PackedFunctionNodeData{T} = GenericFunctionNodeData{T, <: AbstractString }
63
60
PackedFunctionNodeData (x1, x2, x3, x4, x5:: S , x6:: T , multihypo:: Vector{Float64} = [], certainhypo:: Vector{Int} = Int[], x9:: Int = 0 ) where {T <: PackedInferenceType , S <: AbstractString } = GenericFunctionNodeData (x1, x2, x3, x4, x5, x6, multihypo, certainhypo, x9)
64
61
const FunctionNodeData{T} = GenericFunctionNodeData{T, Symbol}
65
- FunctionNodeData (x1, x2, x3, x4, x5:: Symbol , x6:: T , multihypo:: Vector{Float64} = [], certainhypo:: Vector{Int} = Int[], x9:: Int = 0 ) where {T <: Union{FunctorInferenceType, ConvolutionObject } }= GenericFunctionNodeData {T, Symbol} (x1, x2, x3, x4, x5, x6, multihypo, certainhypo, x9)
62
+ FunctionNodeData (x1, x2, x3, x4, x5:: Symbol , x6:: T , multihypo:: Vector{Float64} = [], certainhypo:: Vector{Int} = Int[], x9:: Int = 0 ) where {T <: Union{FunctorInferenceType, FactorOperationalMemory } }= GenericFunctionNodeData {T, Symbol} (x1, x2, x3, x4, x5, x6, multihypo, certainhypo, x9)
66
63
67
64
# #==============================================================================
68
65
# # Factors
@@ -104,7 +101,7 @@ mutable struct DFGFactor{T, S} <: AbstractDFGFactor
104
101
""" Mutable parameters for the variable. We suggest using accessors to get to this data.
105
102
Accessors: [`getSolvable`](@ref), [`setSolvable!`](@ref)"""
106
103
_dfgNodeParams:: DFGNodeParams
107
- """ Internal cache of the ordering of the neighbor variables. Rather use getNeighbors to get the list as this is an internal value.
104
+ """ Internal cache of the ordering of the neighbor variables. Rather use getVariableOrder to get the list as this is an internal value.
108
105
Accessors: [`getVariableOrder`](@ref)"""
109
106
_variableOrderSymbols:: Vector{Symbol}
110
107
end
0 commit comments