Skip to content

Commit 2e6530c

Browse files
committed
mv approxConvCircular, depr printSummaryGraph
1 parent 7b1a456 commit 2e6530c

File tree

4 files changed

+100
-87
lines changed

4 files changed

+100
-87
lines changed

src/AdditionalUtils.jl

Lines changed: 0 additions & 86 deletions
Original file line numberDiff line numberDiff line change
@@ -132,91 +132,5 @@ end
132132

133133

134134

135-
"""
136-
$SIGNATURES
137-
138-
Print basic summary of graph to `logger=ConsoleLogger()`.
139-
"""
140-
function printGraphSummary(dfg::G, logger=ConsoleLogger())::Nothing where {G <: AbstractDFG}
141-
vars = ls(dfg)
142-
fcts = lsf(dfg)
143-
144-
prio = lsfPriors(dfg)
145-
146-
isinit = map(x->isInitialized(dfg,x), vars)
147-
infdim = map(x->getVariableInferredDim(dfg, x), vars)
148-
numedges = map(v->length(ls(dfg, v)), vars)
149-
numfed = map(fc->length(ls(dfg, fc)), fcts)
150-
vardims = map(v->getDimension(getVariable(dfg, v)), vars)
151-
fctdims = map(v->getDimension(getFactor(dfg, v)), fcts)
152-
priodims = map(v->getDimension(getFactor(dfg, v)), prio)
153-
154-
with_logger(logger) do
155-
@info "Distributed Factor Graph summary:"
156-
@info " num variables: $(length(vars))"
157-
@info " num factors: $(length(fcts)), w/ $(length(prio)) priors"
158-
@info " var initialized: $(sum(isinit))"
159-
@info ""
160-
@info " var num edges: min. $(minimum(numedges)) | mean $(round(Statistics.mean(numedges),digits=2)) | 90% $(round(quantile(numedges,0.9),digits=2)) | max. $(maximum(numedges))"
161-
@info " fct num edges: min. $(minimum(numfed)) | mean $(round(Statistics.mean(numfed),digits=2)) | 90% $(round(quantile(numfed,0.9),digits=2)) | max. $(maximum(numfed))"
162-
@info " Variable dims: min. $(minimum(vardims)) | mean $(round(Statistics.mean(vardims),digits=2)) | 90% $(round(quantile(vardims,0.9),digits=2)) | max. $(maximum(vardims))"
163-
@info " Factor dims: min. $(minimum(fctdims)) | mean $(round(Statistics.mean(fctdims),digits=2)) | 90% $(round(quantile(fctdims,0.9),digits=2)) | max. $(maximum(fctdims))"
164-
@info " Prior dimens: min. $(minimum(priodims)) | mean $(round(Statistics.mean(priodims),digits=2)) | 90% $(round(quantile(priodims,0.9),digits=2)) | max. $(maximum(priodims))"
165-
@info " var infr'dims: min. $(minimum(infdim)) | mean $(round(Statistics.mean(infdim),digits=2)) | 90% $(round(quantile(infdim,0.9),digits=2)) | max. $(maximum(infdim))"
166-
end
167-
nothing
168-
end
169-
170-
"""
171-
$SIGNATURES
172-
173-
Print basic summary of graph to `logger=ConsoleLogger()`.
174-
"""
175-
function printSummary(dfg::G, logger=ConsoleLogger()) where G <: AbstractDFG
176-
printGraphSummary(dfg, logger)
177-
end
178-
179-
180-
"""
181-
$SIGNATURES
182-
183-
Build an approximate density `[Y|X,DX,.]=[X|Y,DX][DX|.]` as proposed by the conditional convolution.
184-
185-
Notes
186-
- Assume both are on circular manifold, `manikde!(pts, (:Circular,))`
187-
"""
188-
function approxConvCircular(pX::ManifoldKernelDensity,
189-
pDX::ManifoldKernelDensity; N::Int=100)
190-
#
191-
192-
# building basic factor graph
193-
tfg = initfg()
194-
addVariable!(tfg, :s1, Sphere1)
195-
addVariable!(tfg, :s2, Sphere1)
196-
addFactor!(tfg, [:s1;:s2], Sphere1Sphere1(pDX), graphinit=false)
197-
initManual!(tfg,:s1, pX)
198-
199-
# solve for outgoing proposal value
200-
approxConv(tfg,:s1s2f1,:s2)
201-
end
202-
203-
function approxConvCircular(pX::ManifoldKernelDensity,
204-
pDX::SamplableBelief; N::Int=100)
205-
#
206-
pts = reshape(rand(pDX, N), 1, :)
207-
pC = manikde!(pts, Sphere1)
208-
approxConvCircular(pX, pC)
209-
end
210-
211-
212-
function approxConvCircular(pX::SamplableBelief,
213-
pDX::ManifoldKernelDensity; N::Int=100)
214-
#
215-
pts = reshape(rand(pX, N), 1, :)
216-
pC = manikde!(pts, Sphere1)
217-
approxConvCircular(pC, pDX)
218-
end
219-
220-
221135

222136
#

src/Deprecated.jl

Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,56 @@ end
2626
##==============================================================================
2727

2828

29+
@deprecate printGraphSummary(dfg::AbstractDFG, logger=ConsoleLogger()) show(logger.stream, MIME("text/plain"), dfg)
30+
@deprecate printSummary(dfg::AbstractDFG, logger=ConsoleLogger()) show(logger.stream, MIME("text/plain"), dfg)
31+
32+
33+
# """
34+
# $SIGNATURES
35+
36+
# Print basic summary of graph to `logger=ConsoleLogger()`.
37+
# """
38+
# function printGraphSummary(dfg::G, logger=ConsoleLogger())::Nothing where {G <: AbstractDFG}
39+
# vars = ls(dfg)
40+
# fcts = lsf(dfg)
41+
42+
# prio = lsfPriors(dfg)
43+
44+
# isinit = map(x->isInitialized(dfg,x), vars)
45+
# infdim = map(x->getVariableInferredDim(dfg, x), vars)
46+
# numedges = map(v->length(ls(dfg, v)), vars)
47+
# numfed = map(fc->length(ls(dfg, fc)), fcts)
48+
# vardims = map(v->getDimension(getVariable(dfg, v)), vars)
49+
# fctdims = map(v->getDimension(getFactor(dfg, v)), fcts)
50+
# priodims = map(v->getDimension(getFactor(dfg, v)), prio)
51+
52+
# with_logger(logger) do
53+
# @info "Distributed Factor Graph summary:"
54+
# @info " num variables: $(length(vars))"
55+
# @info " num factors: $(length(fcts)), w/ $(length(prio)) priors"
56+
# @info " var initialized: $(sum(isinit))"
57+
# @info ""
58+
# @info " var num edges: min. $(minimum(numedges)) | mean $(round(Statistics.mean(numedges),digits=2)) | 90% $(round(quantile(numedges,0.9),digits=2)) | max. $(maximum(numedges))"
59+
# @info " fct num edges: min. $(minimum(numfed)) | mean $(round(Statistics.mean(numfed),digits=2)) | 90% $(round(quantile(numfed,0.9),digits=2)) | max. $(maximum(numfed))"
60+
# @info " Variable dims: min. $(minimum(vardims)) | mean $(round(Statistics.mean(vardims),digits=2)) | 90% $(round(quantile(vardims,0.9),digits=2)) | max. $(maximum(vardims))"
61+
# @info " Factor dims: min. $(minimum(fctdims)) | mean $(round(Statistics.mean(fctdims),digits=2)) | 90% $(round(quantile(fctdims,0.9),digits=2)) | max. $(maximum(fctdims))"
62+
# @info " Prior dimens: min. $(minimum(priodims)) | mean $(round(Statistics.mean(priodims),digits=2)) | 90% $(round(quantile(priodims,0.9),digits=2)) | max. $(maximum(priodims))"
63+
# @info " var infr'dims: min. $(minimum(infdim)) | mean $(round(Statistics.mean(infdim),digits=2)) | 90% $(round(quantile(infdim,0.9),digits=2)) | max. $(maximum(infdim))"
64+
# end
65+
# nothing
66+
# end
67+
68+
# """
69+
# $SIGNATURES
70+
71+
# Print basic summary of graph to `logger=ConsoleLogger()`.
72+
# """
73+
# function printSummary(dfg::G, logger=ConsoleLogger()) where G <: AbstractDFG
74+
# printGraphSummary(dfg, logger)
75+
# end
76+
77+
78+
2979
# """
3080
# $SIGNATURES
3181

src/IncrementalInference.jl

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,6 @@ export *,
132132
# state machine methods
133133
StateMachine,
134134
exitStateMachine,
135-
printGraphSummary,
136135
printSummary,
137136
print,
138137
getGraphFromHistory,

src/services/ApproxConv.jl

Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -312,4 +312,54 @@ end
312312

313313

314314

315+
## ==========================================================================================
316+
## DEPRECATE / REFACTOR BELOW
317+
## ==========================================================================================
318+
319+
320+
321+
322+
"""
323+
$SIGNATURES
324+
325+
Build an approximate density `[Y|X,DX,.]=[X|Y,DX][DX|.]` as proposed by the conditional convolution.
326+
327+
Notes
328+
- Assume both are on circular manifold, `manikde!(pts, (:Circular,))`
329+
"""
330+
function approxConvCircular(pX::ManifoldKernelDensity,
331+
pDX::ManifoldKernelDensity; N::Int=100)
332+
#
333+
334+
# building basic factor graph
335+
tfg = initfg()
336+
addVariable!(tfg, :s1, Sphere1)
337+
addVariable!(tfg, :s2, Sphere1)
338+
addFactor!(tfg, [:s1;:s2], Sphere1Sphere1(pDX), graphinit=false)
339+
initManual!(tfg,:s1, pX)
340+
341+
# solve for outgoing proposal value
342+
approxConv(tfg,:s1s2f1,:s2)
343+
end
344+
345+
function approxConvCircular(pX::ManifoldKernelDensity,
346+
pDX::SamplableBelief; N::Int=100)
347+
#
348+
pts = reshape(rand(pDX, N), 1, :)
349+
pC = manikde!(pts, Sphere1)
350+
approxConvCircular(pX, pC)
351+
end
352+
353+
354+
function approxConvCircular(pX::SamplableBelief,
355+
pDX::ManifoldKernelDensity; N::Int=100)
356+
#
357+
pts = reshape(rand(pX, N), 1, :)
358+
pC = manikde!(pts, Sphere1)
359+
approxConvCircular(pC, pDX)
360+
end
361+
362+
363+
364+
315365
#

0 commit comments

Comments
 (0)