Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions src/qpmodel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,12 @@ mutable struct QPData{
}
c0::T # constant term in objective
c::S # linear term
v::S # vector that stores products with the hessian v = H*u
H::M1
A::M2
end

@inline QPData(c0, c, H, A) = QPData(c0, c, similar(c), H, A)
isdense(data::QPData{T, S, M1, M2}) where {T, S, M1, M2} = M1 <: DenseMatrix || M2 <: DenseMatrix

function Base.convert(
Expand All @@ -20,7 +22,7 @@ function Base.convert(
) where {T, S, M1 <: AbstractMatrix, M2 <: AbstractMatrix, MCOO <: SparseMatrixCOO{T}}
HCOO = (M1 <: SparseMatrixCOO) ? data.H : SparseMatrixCOO(data.H)
ACOO = (M2 <: SparseMatrixCOO) ? data.A : SparseMatrixCOO(data.A)
return QPData(data.c0, data.c, HCOO, ACOO)
return QPData(data.c0, data.c, data.v, HCOO, ACOO)
end
Base.convert(
::Type{QPData{T, S, MCOO, MCOO}},
Expand Down Expand Up @@ -256,9 +258,8 @@ end

function NLPModels.obj(qp::AbstractQuadraticModel{T, S}, x::AbstractVector) where {T, S}
NLPModels.increment!(qp, :neval_obj)
Hx = fill!(S(undef, qp.meta.nvar), zero(T))
mul!(Hx, Symmetric(qp.data.H, :L), x)
return qp.data.c0 + dot(qp.data.c, x) + dot(Hx, x) / 2
mul!(qp.data.v, Symmetric(qp.data.H, :L), x)
return qp.data.c0 + dot(qp.data.c, x) + dot(qp.data.v, x) / 2
end

function NLPModels.grad!(qp::AbstractQuadraticModel, x::AbstractVector, g::AbstractVector)
Expand Down
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -259,3 +259,4 @@ end
end

include("test_presolve.jl")
include("test_allocations.jl")
47 changes: 47 additions & 0 deletions test/test_allocations.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
function test_only_zeros(table)
for (key, vals) in table
if !isnan(vals)
@test vals == 0
vals != 0 && println(key)
end
end
end

@testset "allocations" begin
@testset "allocs QPSData" begin
for problem in qp_problems_Matrix
nlp_qps = eval(Symbol(problem * "_QPSData"))()
test_only_zeros(test_allocs_nlpmodels(nlp_qps))
end
end

@testset "allocs QP_dense" begin
for problem in qp_problems_Matrix
nlp_qm_dense = eval(Symbol(problem * "_QP_dense"))()
test_only_zeros(test_allocs_nlpmodels(nlp_qm_dense))
end
end

@testset "allocs COO QPSData" begin
for problem in qp_problems_COO
nlp_qps = eval(Symbol(problem * "_QPSData"))()
test_only_zeros(test_allocs_nlpmodels(nlp_qps))
end
end

@testset "allocs COO QP" begin
for problem in qp_problems_COO
nlp_qm_dense = eval(Symbol(problem * "_QP"))()
test_only_zeros(test_allocs_nlpmodels(nlp_qm_dense))
end
end

@testset "allocs quadratic approximation" begin
for problem in NLPModelsTest.nlp_problems
nlp = eval(Symbol(problem))()
x = nlp.meta.x0
nlp_qm = QuadraticModel(nlp, x)
test_only_zeros(test_allocs_nlpmodels(nlp_qm))
end
end
end