Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/samplers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ for fname in ["aliastable.jl",
"poisson.jl",
"exponential.jl",
"gamma.jl",
"expgamma.jl",
"multinomial.jl",
"vonmises.jl",
"vonmisesfisher.jl",
Expand Down
57 changes: 57 additions & 0 deletions src/samplers/expgamma.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# These are used to bypass subnormals when sampling from

# Inverse Power sampler
# uses the x*u^(1/a) trick from Marsaglia and Tsang (2000) for when shape < 1
struct ExpGammaIPSampler{S<:Sampleable{Univariate,Continuous},T<:Real} <: Sampleable{Univariate,Continuous}
s::S #sampler for Gamma(1+shape,scale)
nia::T #-1/scale
end

ExpGammaIPSampler(d::Gamma) = ExpGammaIPSampler(d, GammaMTSampler)
function ExpGammaIPSampler(d::Gamma, ::Type{S}) where {S<:Sampleable}
shape_d = shape(d)
sampler = S(Gamma{partype(d)}(1 + shape_d, scale(d)))
return ExpGammaIPSampler(sampler, -inv(shape_d))
end

function rand(rng::AbstractRNG, s::ExpGammaIPSampler)
x = log(rand(rng, s.s))
e = randexp(rng, typeof(x))
return muladd(s.nia, e, x)
end


# Small Shape sampler
# From Liu, C., Martin, R., and Syring, N. (2015) for when shape < 0.3
struct ExpGammaSSSampler{T<:Real} <: Sampleable{Univariate,Continuous}
α::T
θ::T
λ::T
ω::T
ωω::T
end

function ExpGammaSSSampler(d::Gamma)
α = shape(d)
ω = α / MathConstants.e / (1 - α)
return ExpGammaSSSampler(promote(
α,
scale(d),
inv(α) - 1,
ω,
inv(ω + 1)
)...)
end

function rand(rng::AbstractRNG, s::ExpGammaSSSampler{T})::Float64 where T
flT = float(T)
while true
U = rand(rng, flT)
z = (U <= s.ωω) ? -log(U / s.ωω) : log(rand(rng, flT)) / s.λ
h = exp(-z - exp(-z / s.α))
η = z >= zero(T) ? exp(-z) : s.ω * s.λ * exp(s.λ * z)
if h / η > rand(rng, flT)
return s.θ - z / s.α
end
end
end
Loading