Skip to content
Merged
31 changes: 31 additions & 0 deletions activate.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
using Revise
using Pkg

# Package
Pkg.activate("C:/Users/domma/Dropbox/Software/LogExpFunctions.jl/")

using LogExpFunctions
using CairoMakie


xrange = range(-1.5, 1.5, length=100)
yexp = exp.(xrange)
ysoftplus1 = softplus.(xrange)
ysoftplus2 = softplus.(xrange; a=2)
ysoftplus3 = softplus.(xrange; a=3)

ysoftplus5 = softplus.(xrange; a=5)
ysoftplus10 = softplus.(xrange; a=10)


# f = lines(xrange, yexp, color=:black)
f = lines(xrange, ysoftplus1, color=:red)
lines!(xrange, ysoftplus2, color=:orange)
lines!(xrange, ysoftplus3, color=:darkorange)
lines!(xrange, ysoftplus5, color=:green)
lines!(xrange, ysoftplus10, color=:blue)

ablines!(0, 1, color=:grey, linestyle=:dash)
f

softplus(0; a=3)
23 changes: 20 additions & 3 deletions src/basicfuns.jl
Original file line number Diff line number Diff line change
Expand Up @@ -165,9 +165,12 @@ Return `log(1+exp(x))` evaluated carefully for largish `x`.
This is also called the ["softplus"](https://en.wikipedia.org/wiki/Rectifier_(neural_networks))
transformation, being a smooth approximation to `max(0,x)`. Its inverse is [`logexpm1`](@ref).

This is also called the ["softplus"](https://en.wikipedia.org/wiki/Rectifier_(neural_networks))
transformation (in its default parametrization, see [`softplus`](@ref)), being a smooth approximation to `max(0,x)`.

See:
* Martin Maechler (2012) [“Accurately Computing log(1 − exp(− |a|))”](http://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf)
"""
"""
log1pexp(x::Real) = _log1pexp(float(x)) # ensures that BigInt/BigFloat, Int/Float64 etc. dispatch to the same algorithm

# Approximations based on Maechler (2012)
Expand Down Expand Up @@ -257,8 +260,22 @@ Return `log(exp(x) - 1)` or the “invsoftplus” function. It is the inverse o
logexpm1(x::Real) = x <= 18.0 ? log(_expm1(x)) : x <= 33.3 ? x - exp(-x) : oftype(exp(-x), x)
logexpm1(x::Float32) = x <= 9f0 ? log(expm1(x)) : x <= 16f0 ? x - exp(-x) : oftype(exp(-x), x)

const softplus = log1pexp
const invsoftplus = logexpm1
"""
$(SIGNATURES)

The generalized `softplus` function (Wiemann et al., 2024) takes an additional optional parameter `a` that control
the approximation error with respect to the linear spline. It defaults to `a=1.0`, in which case the softplus is
equivalent to [`log1pexp`](@ref).

See:
* Wiemann, P. F., Kneib, T., & Hambuckers, J. (2024). Using the softplus function to construct alternative link functions in generalized linear models and beyond. Statistical Papers, 65(5), 3155-3180.
"""
softplus(x::Real) = log1pexp(x)
softplus(x::Real, a::Real) = log1pexp(a * x) / a

invsoftplus(y::Real) = logexpm1(y)
invsoftplus(y::Real, a::Real) = logexpm1(a * y) / a


"""
$(SIGNATURES)
Expand Down