Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/MixedModels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,7 @@ include("randomeffectsterm.jl")
include("linearmixedmodel.jl")
include("gausshermite.jl")
include("generalizedlinearmixedmodel.jl")
include("mixedmodel.jl")
include("likelihoodratiotest.jl")
include("linalg/statschol.jl")
include("linalg/cholUnblocked.jl")
Expand Down
57 changes: 33 additions & 24 deletions src/generalizedlinearmixedmodel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -53,10 +53,19 @@ struct GeneralizedLinearMixedModel{T<:AbstractFloat} <: MixedModel{T}
mult::Vector{T}
end

StatsBase.coefnames(m::GeneralizedLinearMixedModel) = coefnames(m.LMM)

StatsBase.coeftable(m::GeneralizedLinearMixedModel) = coeftable(m.LMM)

function StatsBase.coeftable(m::GeneralizedLinearMixedModel)
co = fixef(m)
se = stderror(m)
z = co ./ se
pvalue = ccdf.(Chisq(1), abs2.(z))
CoefTable(
hcat(co, se, z, pvalue),
["Estimate", "Std.Error", "z value", "P(>|z|)"],
coefnames(m),
4, # pvalcol
3, # teststatcol
)
end

"""
deviance(m::GeneralizedLinearMixedModel{T}, nAGQ=1)::T where {T}
Expand All @@ -73,7 +82,7 @@ function StatsBase.deviance(m::GeneralizedLinearMixedModel{T}, nAGQ = 1) where {
u = vec(first(m.u))
u₀ = vec(first(m.u₀))
copyto!(u₀, u)
ra = RaggedArray(m.resp.devresid, first(m.LMM.reterms).refs)
ra = RaggedArray(m.resp.devresid, first(m.LMM.allterms).refs)
devc0 = sum!(map!(abs2, m.devc0, u), ra) # the deviance components at z = 0
sd = map!(inv, m.sd, m.LMM.L[Block(1, 1)].diag)
mult = fill!(m.mult, 0)
Expand Down Expand Up @@ -112,16 +121,15 @@ function deviance!(m::GeneralizedLinearMixedModel, nAGQ = 1)
deviance(m, nAGQ)
end

function GLM.dispersion(m::GeneralizedLinearMixedModel, sqr::Bool = false)
function GLM.dispersion(m::GeneralizedLinearMixedModel{T}, sqr::Bool = false) where {T}
# adapted from GLM.dispersion(::AbstractGLM, ::Bool)
# TODO: PR for a GLM.dispersion(resp::GLM.GlmResp, dof_residual::Int, sqr::Bool)
r = m.resp
if dispersion_parameter(r.d)
wrkwt, wrkresid = r.wrkwt, r.wrkresid
s = sum(i -> wrkwt[i] * abs2(wrkresid[i]), eachindex(wrkwt, wrkresid)) / dof_residual(m)
s = sum(wt * abs2(re) for (wt, re) in zip(r.wrkwt, r.wrkresid)) / dof_residual(m)
sqr ? s : sqrt(s)
else
one(eltype(r.mu))
one(T)
end
end

Expand Down Expand Up @@ -391,7 +399,11 @@ function Base.getproperty(m::GeneralizedLinearMixedModel, s::Symbol)
m.β
elseif s (, :sigma)
sdest(m)
elseif s (:A, :L, , :lowerbd, :corr, :vcov, :PCA, :rePCA, :optsum, :X, :reterms, :feterms, :formula, :σs, :σρs)
elseif s == :σs
σs(m)
elseif s == :σρs
σρs(m)
elseif s (:A, :L, , :lowerbd, :corr, :PCA, :rePCA, :optsum, :X, :reterms, :feterms, :formula)
getproperty(m.LMM, s)
elseif s == :y
m.resp.y
Expand All @@ -401,18 +413,17 @@ function Base.getproperty(m::GeneralizedLinearMixedModel, s::Symbol)
end

function StatsBase.loglikelihood(m::GeneralizedLinearMixedModel{T}) where {T}
accum = zero(T)
r = m.resp
D = Distribution(m.resp)
if D <: Binomial
for (μ, y, n) in zip(m.resp.mu, m.resp.y, m.wt)
accum += logpdf(D(round(Int, n), μ), round(Int, y * n))
accum = (
if D <: Binomial
sum(logpdf(D(round(Int, n), μ), round(Int, y * n))
for (μ, y, n) in zip(r.mu, r.y, m.wt))
else
sum(logpdf(D(μ), y) for (μ, y) in zip(r.mu, r.y))
end
else
for (μ, y) in zip(m.resp.mu, m.resp.y)
accum += logpdf(D(μ), y)
end
end
accum - (mapreduce(u -> sum(abs2, u), +, m.u) + logdet(m)) / 2
)
accum - (sum(sum(abs2, u) for u in m.u) + logdet(m)) / 2
end

StatsBase.nobs(m::GeneralizedLinearMixedModel) = length(m.η)
Expand Down Expand Up @@ -589,16 +600,14 @@ varest(m::GeneralizedLinearMixedModel{T}) where {T} = one(T)

# delegate GLMM method to LMM field
for f in (
:describeblocks,
:feL,
:fetrm,
:(LinearAlgebra.logdet),
:lowerbd,
:PCA,
:rePCA,
:(StatsBase.coefnames),
:(StatsModels.modelmatrix),
:(StatsBase.vcov),
:σs,
:σρs,
)
@eval begin
$f(m::GeneralizedLinearMixedModel) = $f(m.LMM)
Expand Down
56 changes: 7 additions & 49 deletions src/linearmixedmodel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -187,13 +187,6 @@ function StatsBase.coeftable(m::LinearMixedModel)
)
end

"""
cond(m::MixedModel)

Return a vector of condition numbers of the λ matrices for the random-effects terms
"""
LinearAlgebra.cond(m::MixedModel) = cond.(m.λ)

"""
condVar(m::LinearMixedModel)

Expand Down Expand Up @@ -251,8 +244,7 @@ function createAL(allterms::Vector{Union{ReMat{T},FeMat{T}}}) where {T}
A, L
end


StatsBase.deviance(m::MixedModel) = objective(m)
StatsBase.deviance(m::LinearMixedModel) = objective(m)

GLM.dispersion(m::LinearMixedModel, sqr::Bool = false) = sqr ? varest(m) : sdest(m)

Expand All @@ -270,14 +262,14 @@ function StatsBase.dof_residual(m::LinearMixedModel)::Int
end

"""
feind(m::MixedModel)
feind(m::LinearMixedModel)

An internal utility to return the index in `m.allterms` of the fixed-effects term.
"""
feind(m::MixedModel) = findfirst(Base.Fix2(isa, FeMat), m.allterms)
feind(m::LinearMixedModel) = findfirst(Base.Fix2(isa, FeMat), m.allterms)

"""
feL(m::MixedModel)
feL(m::LinearMixedModel)

Return the lower Cholesky factor for the fixed-effects parameters, as an `LowerTriangular`
`p × p` matrix.
Expand All @@ -292,7 +284,7 @@ end

Return the fixed-effects term from `m.allterms`
"""
fetrm(m) = m.allterms[feind(m)]
fetrm(m::LinearMixedModel) = m.allterms[feind(m)]

"""
fit!(m::LinearMixedModel[; verbose::Bool=false, REML::Bool=false])
Expand Down Expand Up @@ -765,16 +757,6 @@ function Base.show(io::IO, m::LinearMixedModel)
show(io, coeftable(m))
end

function σs(m::LinearMixedModel)
σ = sdest(m)
NamedTuple{fnames(m)}(((σs(t, σ) for t in m.reterms)...,))
end

function σρs(m::LinearMixedModel)
σ = sdest(m)
NamedTuple{fnames(m)}(((σρs(t, σ) for t in m.reterms)...,))
end

"""
size(m::LinearMixedModel)

Expand Down Expand Up @@ -815,6 +797,8 @@ end
std(m::MixedModel)

Return the estimated standard deviations of the random effects as a `Vector{Vector{T}}`.

FIXME: This uses an old convention of isfinite(sdest(m)). Probably drop in favor of m.σs
"""
function Statistics.std(m::LinearMixedModel)
rl = rowlengths.(m.reterms)
Expand Down Expand Up @@ -919,32 +903,6 @@ Returns the estimate of σ², the variance of the conditional distribution of Y
"""
varest(m::LinearMixedModel) = pwrss(m) / ssqdenom(m)

"""
vcov(m::LinearMixedModel)

Returns the variance-covariance matrix of the fixed effects.
If `corr=true`, then correlation of fixed effects is returned instead.
"""
function StatsBase.vcov(m::LinearMixedModel{T}; corr=false) where {T}
Xtrm = fetrm(m)
iperm = invperm(Xtrm.piv)
p = length(iperm)
r = Xtrm.rank
Linv = inv(feL(m))
permvcov = varest(m) * (Linv'Linv)
if p == Xtrm.rank
vv = permvcov[iperm, iperm]
else
covmat = fill(zero(T) / zero(T), (p, p))
for j = 1:r, i = 1:r
covmat[i, j] = permvcov[i, j]
end
vv = covmat[iperm, iperm]
end

corr ? StatsBase.cov2cor!(vv, stderror(m)) : vv
end

"""
zerocorr!(m::LinearMixedModel[, trmnms::Vector{Symbol}])

Expand Down
44 changes: 44 additions & 0 deletions src/mixedmodel.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@

"""
cond(m::MixedModel)

Return a vector of condition numbers of the λ matrices for the random-effects terms
"""
LinearAlgebra.cond(m::MixedModel) = cond.(m.λ)

function σs(m::MixedModel)
σ = dispersion(m)
NamedTuple{fnames(m)}(((σs(t, σ) for t in m.reterms)...,))
end

function σρs(m::MixedModel)
σ = dispersion(m)
NamedTuple{fnames(m)}(((σρs(t, σ) for t in m.reterms)...,))
end

"""
vcov(m::LinearMixedModel)

Returns the variance-covariance matrix of the fixed effects.
If `corr=true`, then correlation of fixed effects is returned instead.
"""
function StatsBase.vcov(m::MixedModel; corr=false)
Xtrm = fetrm(m)
iperm = invperm(Xtrm.piv)
p = length(iperm)
r = Xtrm.rank
Linv = inv(feL(m))
T = eltype(Linv)
permvcov = dispersion(m, true) * (Linv'Linv)
if p == Xtrm.rank
vv = permvcov[iperm, iperm]
else
covmat = fill(zero(T) / zero(T), (p, p))
for j = 1:r, i = 1:r
covmat[i, j] = permvcov[i, j]
end
vv = covmat[iperm, iperm]
end

corr ? StatsBase.cov2cor!(vv, stderror(m)) : vv
end
31 changes: 31 additions & 0 deletions test/pirls.jl
Original file line number Diff line number Diff line change
Expand Up @@ -77,3 +77,34 @@ end
#@test isapprox(sum(x -> sum(abs2, x), gm4.u), 196.8695297987013, atol=0.1)
#@test isapprox(sum(gm4.resp.devresid), 220.92685781326136, atol=0.1)
end

@testset "goldstein" begin # from a 2020-04-22 msg by Ben Goldstein to R-SIG-Mixed-Models
goldstein =
categorical!(
DataFrame(
group = repeat(1:10, outer=10),
y = [
83, 3, 8, 78, 901, 21, 4, 1, 1, 39,
82, 3, 2, 82, 874, 18, 5, 1, 3, 50,
87, 7, 3, 67, 914, 18, 0, 1, 1, 38,
86, 13, 5, 65, 913, 13, 2, 0, 0, 48,
90, 5, 5, 71, 886, 19, 3, 0, 2, 32,
96, 1, 1, 87, 860, 21, 3, 0, 1, 54,
83, 2, 4, 70, 874, 19, 5, 0, 4, 36,
100, 11, 3, 71, 950, 21, 6, 0, 1, 40,
89, 5, 5, 73, 859, 29, 3, 0, 2, 38,
78, 13, 6, 100, 852, 24, 5, 0, 1, 39
],
),
:group,
)
gform = @formula(y ~ 1 + (1|group))
m1 = fit(MixedModel, gform, goldstein, Poisson())
@test deviance(m1) 193.5587302384811 rtol=1.e-5
@test only(m1.β) 4.192196439077657 atol=1.e-5
@test only(m1.θ) 1.838245201739852 atol=1.e-5
m11 = fit(MixedModel, gform, goldstein, Poisson(), nAGQ=11)
@test deviance(m11) 193.51028088736842 rtol=1.e-5
@test only(m11.β) 4.192196439077657 atol=1.e-5
@test only(m11.θ) 1.838245201739852 atol=1.e-5
end