Skip to content
10 changes: 5 additions & 5 deletions src/chol.jl
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
CholType{T,S<:AbstractMatrix} = Cholesky{T,S}
chol_lower(a::Matrix) = cholesky(a).L
# Accessing a.L directly might involve an extra copy();
# instead, always use the stored Cholesky factor:
chol_lower(a::Cholesky) = a.uplo === 'L' ? a.L : a.U'
chol_upper(a::Cholesky) = a.uplo === 'U' ? a.U : a.L'

# always use the stored cholesky factor, not a copy
chol_lower(a::CholType) = a.uplo === 'L' ? a.L : a.U'
chol_upper(a::CholType) = a.uplo === 'U' ? a.U : a.L'
chol_lower(a::Matrix) = chol_lower(cholesky(a))

if HAVE_CHOLMOD
CholTypeSparse{T} = SuiteSparse.CHOLMOD.Factor{T}
Expand Down
2 changes: 2 additions & 0 deletions src/deprecates.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,5 @@ using Base: @deprecate
@deprecate add_scal(a::Matrix, b::AbstractPDMat, c::Real) pdadd(a, b, c)

@deprecate full(x::AbstractPDMat) Matrix(x)

@deprecate CholType Cholesky
8 changes: 4 additions & 4 deletions src/pdmat.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,12 @@ Full positive definite matrix together with a Cholesky factorization object.
struct PDMat{T<:Real,S<:AbstractMatrix} <: AbstractPDMat{T}
dim::Int
mat::S
chol::CholType{T,S}
chol::Cholesky{T,S}

PDMat{T,S}(d::Int,m::AbstractMatrix{T},c::CholType{T,S}) where {T,S} = new{T,S}(d,m,c)
PDMat{T,S}(d::Int,m::AbstractMatrix{T},c::Cholesky{T,S}) where {T,S} = new{T,S}(d,m,c)
end

function PDMat(mat::AbstractMatrix,chol::CholType{T,S}) where {T,S}
function PDMat(mat::AbstractMatrix,chol::Cholesky{T,S}) where {T,S}
d = size(mat, 1)
size(chol, 1) == d ||
throw(DimensionMismatch("Dimensions of mat and chol are inconsistent."))
Expand All @@ -18,7 +18,7 @@ end

PDMat(mat::Matrix) = PDMat(mat, cholesky(mat))
PDMat(mat::Symmetric) = PDMat(Matrix(mat))
PDMat(fac::CholType) = PDMat(Matrix(fac), fac)
PDMat(fac::Cholesky) = PDMat(Matrix(fac), fac)

### Conversion
Base.convert(::Type{PDMat{T}}, a::PDMat) where {T<:Real} = PDMat(convert(AbstractArray{T}, a.mat))
Expand Down
20 changes: 20 additions & 0 deletions test/chol.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
using LinearAlgebra, PDMats
using PDMats: chol_lower

@testset "chol_lower" begin
A = rand(100, 100)
C = A'A
size_of_one_copy = sizeof(C)
@assert size_of_one_copy > 100 # ensure the matrix is large enough that few-byte allocations don't matter

chol_lower(C)
@test (@allocated chol_lower(C)) < 1.05 * size_of_one_copy # allow 5% overhead

for uplo in (:L, :U)
ch = cholesky(Symmetric(C, uplo))
chol_lower(ch)
@test (@allocated chol_lower(ch)) < 50 # allow small overhead for wrapper types
chol_upper(ch)
@test (@allocated chol_upper(ch)) < 50 # allow small overhead for wrapper types
@test
end
2 changes: 1 addition & 1 deletion test/runtests.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
include("testutils.jl")
tests = ["pdmtypes", "addition", "generics", "kron"]
tests = ["pdmtypes", "addition", "generics", "kron", "chol"]
println("Running tests ...")

for t in tests
Expand Down