-
Notifications
You must be signed in to change notification settings - Fork 45
Support non-interpolating quantile definitions #187
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
|
|
@@ -854,8 +854,12 @@ median!(v::AbstractArray) = median!(vec(v)) | |||||
| median(itr) | ||||||
|
|
||||||
| Compute the median of all elements in a collection. | ||||||
| For an even number of elements no exact median element exists, so the result is | ||||||
| equivalent to calculating mean of two median elements. | ||||||
|
|
||||||
| For an even number of elements no exact median element exists, so the | ||||||
| mean of two median elements is returned. | ||||||
| This is equivalent to [`quantile(itr, 0.5, type=2)`](@ref). | ||||||
| Use `quantile` with `type=1` or `type=3` to compute median of types | ||||||
| with limited or no support for arithmetic operations, such as `Date`. | ||||||
|
|
||||||
| !!! note | ||||||
| If `itr` contains `NaN` or [`missing`](@ref) values, the result is also | ||||||
|
|
@@ -923,31 +927,47 @@ julia> median([√1, √3, √2]) | |||||
| median(f::Function, v) = median!(f.(v)) | ||||||
|
|
||||||
| """ | ||||||
| quantile!([q::AbstractArray, ] v::AbstractVector, p; sorted=false, alpha::Real=1.0, beta::Real=alpha) | ||||||
| quantile!([q::AbstractArray, ] v::AbstractVector, p; | ||||||
| sorted=false, type::Integer=7, alpha::Real=1.0, beta::Real=alpha) | ||||||
|
|
||||||
| Compute the quantile(s) of a vector `v` at a specified probability or vector or tuple of | ||||||
| probabilities `p` on the interval [0,1]. If `p` is a vector, an optional | ||||||
| output array `q` may also be specified. (If not provided, a new output array is created.) | ||||||
| The keyword argument `sorted` indicates whether `v` can be assumed to be sorted; if | ||||||
| `false` (the default), then the elements of `v` will be partially sorted in-place. | ||||||
|
|
||||||
| Samples quantile are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`, | ||||||
| where `x[j]` is the j-th order statistic of `v`, `j = floor(n*p + m)`, | ||||||
| `m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`. | ||||||
|
|
||||||
| By default (`alpha = beta = 1`), quantiles are computed via linear interpolation between the points | ||||||
| `((k-1)/(n-1), x[k])`, for `k = 1:n` where `n = length(v)`. This corresponds to Definition 7 | ||||||
| By default (`type=7`, or equivalently `alpha = beta = 1`), | ||||||
| quantiles are computed via linear interpolation between the points | ||||||
| `((k-1)/(n-1), x[k])`, for `k = 1:n` where `x[j]` is the j-th order statistic of `v` | ||||||
| and `n = length(v)`. This corresponds to Definition 7 | ||||||
| of Hyndman and Fan (1996), and is the same as the R and NumPy default. | ||||||
|
|
||||||
| The keyword arguments `alpha` and `beta` correspond to the same parameters in Hyndman and Fan, | ||||||
| setting them to different values allows to calculate quantiles with any of the methods 4-9 | ||||||
| defined in this paper: | ||||||
| - Def. 4: `alpha=0`, `beta=1` | ||||||
| - Def. 5: `alpha=0.5`, `beta=0.5` (MATLAB default) | ||||||
| - Def. 6: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`) | ||||||
| - Def. 7: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and `PERCENTILE.INC`, Python `'inclusive'`) | ||||||
| - Def. 8: `alpha=1/3`, `beta=1/3` | ||||||
| - Def. 9: `alpha=3/8`, `beta=3/8` | ||||||
| The keyword argument `type` can be used to choose among the 9 definitions | ||||||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We could consider calling the keyword |
||||||
| in Hyndman and Fan (1996). Alternatively, `alpha` and `beta` allow reproducing | ||||||
| any of the methods 4-9 defined in this paper. It is not allowed to specify both | ||||||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
just to avoid also introducing "method" as another synonym on top of "definition" and "type". |
||||||
| kinds of arguments at the same time. | ||||||
|
|
||||||
| Definitions 1 to 3 are discontinuous: | ||||||
| - `type=1`: `Q(p) = x[ceil(n*p)]` (SAS-3) | ||||||
| - `type=2`: `Q(p) = middle(x[ceil(n*p)], x[floor(n*p + 1)])` (SAS-5, Stata) | ||||||
| - `type=3`: `Q(p) = x[round(n*p)]` (SAS-2) | ||||||
|
|
||||||
| Definitions 4 to 9 use linear interpolation between consecutive order statistics. | ||||||
| Samples quantiles are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`, | ||||||
nalimilan marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
| where `j = floor(n*p + m)`, `m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`. | ||||||
| - `type=4`: `alpha=0`, `beta=1` (SAS-1) | ||||||
| - `type=5`: `alpha=0.5`, `beta=0.5` (MATLAB default) | ||||||
| - `type=6`: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`) | ||||||
| - `type=7`: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and | ||||||
| `PERCENTILE.INC`, Python `'inclusive'`) | ||||||
| - `type=8`: `alpha=1/3`, `beta=1/3` | ||||||
| - `type=9`: `alpha=3/8`, `beta=3/8` | ||||||
|
|
||||||
| For all 9 definitions, `x[j]` refers to the minimum value when `j < 1` and | ||||||
| to the maximum value when `j > length(x)`. | ||||||
|
|
||||||
| Definitions 1 and 3 have the advantage that they work with types that do not support | ||||||
| all arithmetic operations, such as `Date`. | ||||||
|
|
||||||
| !!! note | ||||||
| An `ArgumentError` is thrown if `v` contains `NaN` or [`missing`](@ref) values. | ||||||
|
|
@@ -956,7 +976,8 @@ defined in this paper: | |||||
| - Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages", | ||||||
| *The American Statistician*, Vol. 50, No. 4, pp. 361-365 | ||||||
|
|
||||||
| - [Quantile on Wikipedia](https://en.wikipedia.org/wiki/Quantile) details the different quantile definitions | ||||||
| - [Quantile on Wikipedia](https://en.wikipedia.org/wiki/Quantile) details | ||||||
| the different quantile definitions | ||||||
|
|
||||||
| # Examples | ||||||
| ```jldoctest | ||||||
|
|
@@ -986,7 +1007,8 @@ julia> y | |||||
| ``` | ||||||
| """ | ||||||
| function quantile!(q::AbstractArray, v::AbstractVector, p::AbstractArray; | ||||||
| sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) | ||||||
| sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||||||
| alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) | ||||||
| require_one_based_indexing(q, v, p) | ||||||
| if size(p) != size(q) | ||||||
| throw(DimensionMismatch("size of p, $(size(p)), must equal size of q, $(size(q))")) | ||||||
|
|
@@ -997,29 +1019,34 @@ function quantile!(q::AbstractArray, v::AbstractVector, p::AbstractArray; | |||||
| _quantilesort!(v, sorted, minp, maxp) | ||||||
|
|
||||||
| for (i, j) in zip(eachindex(p), eachindex(q)) | ||||||
| @inbounds q[j] = _quantile(v,p[i], alpha=alpha, beta=beta) | ||||||
| @inbounds q[j] = _quantile(v,p[i], type=type, alpha=alpha, beta=beta) | ||||||
| end | ||||||
| return q | ||||||
| end | ||||||
|
|
||||||
| function quantile!(v::AbstractVector, p::Union{AbstractArray, Tuple{Vararg{Real}}}; | ||||||
| sorted::Bool=false, alpha::Real=1., beta::Real=alpha) | ||||||
| sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||||||
| alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) | ||||||
| if !isempty(p) | ||||||
| minp, maxp = extrema(p) | ||||||
| _quantilesort!(v, sorted, minp, maxp) | ||||||
| end | ||||||
| return map(x->_quantile(v, x, alpha=alpha, beta=beta), p) | ||||||
| return map(x->_quantile(v, x, type=type, alpha=alpha, beta=beta), p) | ||||||
| end | ||||||
| quantile!(a::AbstractArray, p::Union{AbstractArray,Tuple{Vararg{Real}}}; | ||||||
| sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||||||
| quantile!(vec(a), p, sorted=sorted, alpha=alpha, beta=alpha) | ||||||
| sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||||||
| alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||||||
| quantile!(vec(a), p, sorted=sorted, type=type, alpha=alpha, beta=alpha) | ||||||
|
|
||||||
| quantile!(q::AbstractArray, a::AbstractArray, p::Union{AbstractArray,Tuple{Vararg{Real}}}; | ||||||
| sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||||||
| quantile!(q, vec(a), p, sorted=sorted, alpha=alpha, beta=alpha) | ||||||
| sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||||||
| alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||||||
| quantile!(q, vec(a), p, sorted=sorted, type=type, alpha=alpha, beta=alpha) | ||||||
|
|
||||||
| quantile!(v::AbstractVector, p::Real; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||||||
| _quantile(_quantilesort!(v, sorted, p, p), p, alpha=alpha, beta=beta) | ||||||
| quantile!(v::AbstractVector, p::Real; | ||||||
| sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||||||
| alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||||||
| _quantile(_quantilesort!(v, sorted, p, p), p, type=type, alpha=alpha, beta=beta) | ||||||
|
|
||||||
| # Function to perform partial sort of v for quantiles in given range | ||||||
| function _quantilesort!(v::AbstractVector, sorted::Bool, minp::Real, maxp::Real) | ||||||
|
|
@@ -1042,76 +1069,127 @@ function _quantilesort!(v::AbstractVector, sorted::Bool, minp::Real, maxp::Real) | |||||
| end | ||||||
|
|
||||||
| # Core quantile lookup function: assumes `v` sorted | ||||||
| @inline function _quantile(v::AbstractVector, p::Real; alpha::Real=1.0, beta::Real=alpha) | ||||||
| @inline function _quantile(v::AbstractVector, p::Real; | ||||||
| type::Union{Integer, Nothing}, | ||||||
| alpha::Union{Real, Nothing}, beta::Union{Real, Nothing}) | ||||||
| 0 <= p <= 1 || throw(ArgumentError("input probability out of [0,1] range")) | ||||||
| 0 <= alpha <= 1 || throw(ArgumentError("alpha parameter out of [0,1] range")) | ||||||
| 0 <= beta <= 1 || throw(ArgumentError("beta parameter out of [0,1] range")) | ||||||
| require_one_based_indexing(v) | ||||||
|
|
||||||
| if alpha !== nothing || beta !== nothing | ||||||
| type === nothing || | ||||||
| throw(ArgumentError("it is not allowed to pass both `type` and `alpha` or `beta`")) | ||||||
|
|
||||||
| alpha === nothing && (alpha = 1.0) | ||||||
| beta === nothing && (beta = alpha) | ||||||
|
|
||||||
| 0 <= alpha <= 1 || throw(ArgumentError("alpha parameter out of [0,1] range")) | ||||||
| 0 <= beta <= 1 || throw(ArgumentError("beta parameter out of [0,1] range")) | ||||||
| elseif type === nothing | ||||||
| alpha = beta = 1.0 | ||||||
| elseif 4 <= type <= 9 | ||||||
| alpha = (0.0, 1/2, 0.0, 1.0, 1/3, 3/8)[type-3] | ||||||
| beta = (1.0, 1/2, 0.0, 1.0, 1/3, 3/8)[type-3] | ||||||
|
Comment on lines
+1090
to
+1091
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I know it is no different from the current implementation but are we certain that these values should be |
||||||
| elseif !(1 <= type <= 3) | ||||||
| throw(ArgumentError("`type` must be between 1 and 9")) | ||||||
| end | ||||||
|
|
||||||
| n = length(v) | ||||||
|
|
||||||
| @assert n > 0 # this case should never happen here | ||||||
|
|
||||||
| m = alpha + p * (one(alpha) - alpha - beta) | ||||||
| # Using fma here avoids some rounding errors when aleph is an integer | ||||||
| # The use of oftype supresses the promotion caused by alpha and beta | ||||||
| aleph = fma(n, p, oftype(p, m)) | ||||||
| j = clamp(trunc(Int, aleph), 1, n - 1) | ||||||
| γ = clamp(aleph - j, 0, 1) | ||||||
|
|
||||||
| if n == 1 | ||||||
| a = v[1] | ||||||
| b = v[1] | ||||||
| if type == 1 | ||||||
| return v[clamp(ceil(Int, n*p), 1, n)] | ||||||
| elseif type == 2 | ||||||
| i = clamp(ceil(Int, n*p), 1, n) | ||||||
| j = clamp(floor(Int, n*p + 1), 1, n) | ||||||
| return middle(v[i], v[j]) | ||||||
| elseif type == 3 | ||||||
| return v[clamp(round(Int, n*p), 1, n)] | ||||||
|
Comment on lines
+1100
to
+1107
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I have used simplified formulas specific to each case, as I find code resulting from using the single general formula from the Hyndman & Fan paper very hard to grasp without any advantage. I hope I didn't introduce mistakes, especially in corner cases. Please suggest things to test if you can find some that are not covered. |
||||||
| else | ||||||
| a = v[j] | ||||||
| b = v[j + 1] | ||||||
| end | ||||||
| m = alpha + p * (one(alpha) - alpha - beta) | ||||||
| # Using fma here avoids some rounding errors when aleph is an integer | ||||||
| # The use of oftype supresses the promotion caused by alpha and beta | ||||||
| aleph = fma(n, p, oftype(p, m)) | ||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this will error if
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Good catch. Though this PR doesn't touch this code, let's handle it separately? Reproducer: quantile(1:3, 0, alpha=0.2, beta=0.0) |
||||||
| j = clamp(trunc(Int, aleph), 1, n - 1) | ||||||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. is this clamp correct if
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think so, because |
||||||
| γ = clamp(aleph - j, 0, 1) | ||||||
|
|
||||||
| if n == 1 | ||||||
| a = v[1] | ||||||
| b = v[1] | ||||||
| else | ||||||
| a = v[j] | ||||||
| b = v[j + 1] | ||||||
| end | ||||||
|
|
||||||
| # When a ≉ b, b-a may overflow | ||||||
| # When a ≈ b, (1-γ)*a + γ*b may not be increasing with γ due to rounding | ||||||
| if isfinite(a) && isfinite(b) && | ||||||
| (!(a isa Number) || !(b isa Number) || a ≈ b) | ||||||
| return a + γ*(b-a) | ||||||
| else | ||||||
| return (1-γ)*a + γ*b | ||||||
| try | ||||||
| # When a ≉ b, b-a may overflow | ||||||
| # When a ≈ b, (1-γ)*a + γ*b may not be increasing with γ due to rounding | ||||||
| if isfinite(a) && isfinite(b) && | ||||||
| (!(a isa Number) || !(b isa Number) || a ≈ b) | ||||||
| return a + γ*(b-a) | ||||||
| else | ||||||
| return (1-γ)*a + γ*b | ||||||
| end | ||||||
| catch e | ||||||
| throw(ArgumentError("error when computing quantile between two data values. " * | ||||||
| "Pass `type=1` or `type=3` to compute quantiles on types with " * | ||||||
| "no or limited support for arithmetic operations.")) | ||||||
| end | ||||||
| end | ||||||
| end | ||||||
|
|
||||||
| """ | ||||||
| quantile(itr, p; sorted=false, alpha::Real=1.0, beta::Real=alpha) | ||||||
| quantile(itr, p; | ||||||
| sorted=false, type::Integer=7, alpha::Real=1.0, beta::Real=alpha) | ||||||
|
|
||||||
| Compute the quantile(s) of a collection `itr` at a specified probability or vector or tuple of | ||||||
| Compute the quantile(s) of a collection `qitr` at a specified probability or vector or tuple of | ||||||
| probabilities `p` on the interval [0,1]. The keyword argument `sorted` indicates whether | ||||||
| `itr` can be assumed to be sorted. | ||||||
|
|
||||||
| Samples quantile are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`, | ||||||
| where `x[j]` is the j-th order statistic of `itr`, `j = floor(n*p + m)`, | ||||||
| `m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`. | ||||||
|
|
||||||
| By default (`alpha = beta = 1`), quantiles are computed via linear interpolation between the points | ||||||
| `((k-1)/(n-1), x[k])`, for `k = 1:n` where `n = length(itr)`. This corresponds to Definition 7 | ||||||
| By default (`type=7`, or equivalently `alpha = beta = 1`), | ||||||
| quantiles are computed via linear interpolation between the points | ||||||
| `((k-1)/(n-1), x[k])`, for `k = 1:n` where `x[j]` is the j-th order statistic of `itr` | ||||||
| and `n = length(itr)`. This corresponds to Definition 7 | ||||||
| of Hyndman and Fan (1996), and is the same as the R and NumPy default. | ||||||
|
|
||||||
| The keyword arguments `alpha` and `beta` correspond to the same parameters in Hyndman and Fan, | ||||||
| setting them to different values allows to calculate quantiles with any of the methods 4-9 | ||||||
| defined in this paper: | ||||||
| - Def. 4: `alpha=0`, `beta=1` | ||||||
| - Def. 5: `alpha=0.5`, `beta=0.5` (MATLAB default) | ||||||
| - Def. 6: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`) | ||||||
| - Def. 7: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and `PERCENTILE.INC`, Python `'inclusive'`) | ||||||
| - Def. 8: `alpha=1/3`, `beta=1/3` | ||||||
| - Def. 9: `alpha=3/8`, `beta=3/8` | ||||||
| The keyword argument `type` can be used to choose among the 9 definitions | ||||||
| in Hyndman and Fan (1996). Alternatively, `alpha` and `beta` allow reproducing | ||||||
| any of the methods 4-9 defined in this paper. It is not allowed to specify both | ||||||
| kinds of arguments at the same time. | ||||||
|
|
||||||
| Definitions 1 to 3 are discontinuous: | ||||||
| - `type=1`: `Q(p) = x[ceil(n*p)]` (SAS-3) | ||||||
| - `type=2`: `Q(p) = middle(x[ceil(n*p)], x[floor(n*p + 1)])` (SAS-5, Stata) | ||||||
| - `type=3`: `Q(p) = x[round(n*p)]` (SAS-2) | ||||||
|
|
||||||
| Definitions 4 to 9 use linear interpolation between consecutive order statistics. | ||||||
| Samples quantiles are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`, | ||||||
| where `j = floor(n*p + m)`, `m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`. | ||||||
| - `type=4`: `alpha=0`, `beta=1` (SAS-1) | ||||||
| - `type=5`: `alpha=0.5`, `beta=0.5` (MATLAB default) | ||||||
| - `type=6`: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`) | ||||||
| - `type=7`: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and | ||||||
| `PERCENTILE.INC`, Python `'inclusive'`) | ||||||
| - `type=8`: `alpha=1/3`, `beta=1/3` | ||||||
| - `type=9`: `alpha=3/8`, `beta=3/8` | ||||||
|
|
||||||
| For all 9 definitions, `x[j]` refers to the minimum value when `j < 1` and | ||||||
| to the maximum value when `j > length(x)`. | ||||||
|
|
||||||
| Definitions 1 and 3 have the advantage that they work with types that do not support | ||||||
| all arithmetic operations, such as `Date`. | ||||||
|
|
||||||
| !!! note | ||||||
| An `ArgumentError` is thrown if `v` contains `NaN` or [`missing`](@ref) values. | ||||||
| An `ArgumentError` is thrown if `itr` contains `NaN` or [`missing`](@ref) values. | ||||||
| Use the [`skipmissing`](@ref) function to omit `missing` entries and compute the | ||||||
| quantiles of non-missing values. | ||||||
|
|
||||||
| # References | ||||||
| - Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages", | ||||||
| *The American Statistician*, Vol. 50, No. 4, pp. 361-365 | ||||||
|
|
||||||
| - [Quantile on Wikipedia](https://en.wikipedia.org/wiki/Quantile) details the different quantile definitions | ||||||
| - [Quantile on Wikipedia](https://en.wikipedia.org/wiki/Quantile) details | ||||||
| the different quantile definitions | ||||||
|
|
||||||
| # Examples | ||||||
| ```jldoctest | ||||||
|
|
@@ -1130,17 +1208,22 @@ julia> quantile(skipmissing([1, 10, missing]), 0.5) | |||||
| 5.5 | ||||||
| ``` | ||||||
| """ | ||||||
| quantile(itr, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||||||
| quantile!(collect(itr), p, sorted=sorted, alpha=alpha, beta=beta) | ||||||
| quantile(itr, p; sorted::Bool=false, | ||||||
| type::Union{Integer, Nothing}=nothing, | ||||||
| alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||||||
| quantile!(collect(itr), p, sorted=sorted, type=type, alpha=alpha, beta=beta) | ||||||
|
|
||||||
|
|
||||||
| """ | ||||||
| quantile(f, v) | ||||||
| quantile(f, v; | ||||||
| sorted=false, type::Integer=7, alpha::Real=1.0, beta::Real=alpha) | ||||||
|
|
||||||
| Apply the function `f` to each element of collection `v` | ||||||
| and then compute the quantile(s) at a specified probability | ||||||
| or vector or tuple of probabilities `p` on the interval [0,1]. | ||||||
|
|
||||||
| See the other method for documentation on keyword arguments. | ||||||
|
|
||||||
| ```jldoctest | ||||||
| julia> using Statistics | ||||||
|
|
||||||
|
|
@@ -1157,11 +1240,16 @@ julia> quantile(.√[1, 3, 2], (0.3, 0.4, 0.5)) | |||||
| (1.248528137423857, 1.3313708498984762, 1.4142135623730951) | ||||||
| ``` | ||||||
| """ | ||||||
| quantile(f::Function, v, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||||||
| quantile!(f.(v), p; sorted=sorted, alpha=alpha, beta=beta) | ||||||
|
|
||||||
| quantile(v::AbstractVector, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||||||
| quantile!(sorted ? v : Base.copymutable(v), p; sorted=sorted, alpha=alpha, beta=beta) | ||||||
| quantile(f::Function, v, p; | ||||||
| sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||||||
| alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||||||
| quantile!(f.(v), p; sorted=sorted, type=type, alpha=alpha, beta=beta) | ||||||
|
|
||||||
| quantile(v::AbstractVector, p; | ||||||
| sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||||||
| alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||||||
| quantile!(sorted ? v : Base.copymutable(v), p; | ||||||
| sorted=sorted, type=type, alpha=alpha, beta=beta) | ||||||
|
|
||||||
| # If package extensions are not supported in this Julia version | ||||||
| if !isdefined(Base, :get_extension) | ||||||
|
|
||||||
Uh oh!
There was an error while loading. Please reload this page.