Skip to content

Vector MCP Server for AI Agents - Supports ChromaDB, Couchbase, MongoDB, Qdrant, and PGVector

License

Notifications You must be signed in to change notification settings

Knuckles-Team/vector-mcp

Repository files navigation

Vector Database - A2A | AG-UI | MCP

PyPI - Version MCP Server PyPI - Downloads GitHub Repo stars GitHub forks GitHub contributors PyPI - License GitHub

GitHub last commit (by committer) GitHub pull requests GitHub closed pull requests GitHub issues

GitHub top language GitHub language count GitHub repo size GitHub repo file count (file type) PyPI - Wheel PyPI - Implementation

Version: 1.0.4

Overview

This is an MCP Server implementation which allows for a standardized collection management system across vector database technologies.

This was heavily inspired by the RAG implementation of Microsoft's Autogen V1 framework, however, this was changed to an MCP server model instead.

AI Agents can:

  • Create collections with documents stored on the local filesystem or URLs
  • Add documents to a collection
  • Utilize collection for retrieval augmented generation (RAG)
  • Delete collection

Supports:

  • ChromaDB
  • PGVector
  • Couchbase
  • Qdrant
  • MongoDB

This repository is actively maintained - Contributions and bug reports are welcome!

Automated tests are planned

MCP

MCP Tools

Function Name Description Tag(s)
create_collection Creates a new collection or retrieves an existing one in the vector database. collection_management
vector_search Retrieves and gathers related knowledge from the vector database instance using the question variable. vector_search
add_documents Adds documents to an existing collection in the vector database. This can be used to extend collections with additional documents. collection_management
delete_collection Deletes a collection from the vector database. collection_management
list_collections Lists all collections in the vector database. collection_management

A2A Agent

Architecture:

---
config:
  layout: dagre
---
flowchart TB
 subgraph subGraph0["Agent Capabilities"]
        C["Agent"]
        B["A2A Server - Uvicorn/FastAPI"]
        D["MCP Tools"]
        F["Agent Skills"]
  end
    C --> D & F
    A["User Query"] --> B
    B --> C
    D --> E["Platform API"]

     C:::agent
     B:::server
     A:::server
    classDef server fill:#f9f,stroke:#333
    classDef agent fill:#bbf,stroke:#333,stroke-width:2px
    style B stroke:#000000,fill:#FFD600
    style D stroke:#000000,fill:#BBDEFB
    style F fill:#BBDEFB
    style A fill:#C8E6C9
    style subGraph0 fill:#FFF9C4
Loading

Component Interaction Diagram

sequenceDiagram
    participant User
    participant Server as A2A Server
    participant Agent as Agent
    participant Skill as Agent Skills
    participant MCP as MCP Tools

    User->>Server: Send Query
    Server->>Agent: Invoke Agent
    Agent->>Skill: Analyze Skills Available
    Skill->>Agent: Provide Guidance on Next Steps
    Agent->>MCP: Invoke Tool
    MCP-->>Agent: Tool Response Returned
    Agent-->>Agent: Return Results Summarized
    Agent-->>Server: Final Response
    Server-->>User: Output
Loading

Usage

MCP CLI

Short Flag Long Flag Description
-h --help Display help information
-t --transport Transport method: 'stdio', 'http', or 'sse' [legacy] (default: stdio)
-s --host Host address for HTTP transport (default: 0.0.0.0)
-p --port Port number for HTTP transport (default: 8000)
--auth-type Authentication type: 'none', 'static', 'jwt', 'oauth-proxy', 'oidc-proxy', 'remote-oauth' (default: none)
--token-jwks-uri JWKS URI for JWT verification
--token-issuer Issuer for JWT verification
--token-audience Audience for JWT verification
--oauth-upstream-auth-endpoint Upstream authorization endpoint for OAuth Proxy
--oauth-upstream-token-endpoint Upstream token endpoint for OAuth Proxy
--oauth-upstream-client-id Upstream client ID for OAuth Proxy
--oauth-upstream-client-secret Upstream client secret for OAuth Proxy
--oauth-base-url Base URL for OAuth Proxy
--oidc-config-url OIDC configuration URL
--oidc-client-id OIDC client ID
--oidc-client-secret OIDC client secret
--oidc-base-url Base URL for OIDC Proxy
--remote-auth-servers Comma-separated list of authorization servers for Remote OAuth
--remote-base-url Base URL for Remote OAuth
--allowed-client-redirect-uris Comma-separated list of allowed client redirect URIs
--eunomia-type Eunomia authorization type: 'none', 'embedded', 'remote' (default: none)
--eunomia-policy-file Policy file for embedded Eunomia (default: mcp_policies.json)
--eunomia-remote-url URL for remote Eunomia server

Using as an MCP Server

The MCP Server can be run in two modes: stdio (for local testing) or http (for networked access). To start the server, use the following commands:

Run in stdio mode (default):

vector-mcp --transport "stdio"

Run in HTTP mode:

vector-mcp --transport "http"  --host "0.0.0.0"  --port "8000"

Creating Collection

AI Prompt:

Create a collection called zapdos with the documents in this directory:
/home/user/Documents/Chroma

AI Response:

The collection named "zapdos" has been successfully created or retrieved from the vector database
using the documents in the directory /home/user/Documents/Chroma.
Let me know if you'd like to perform any further actions, such as querying the collection or adding more documents!

Retrieving from Collection

AI Prompt:

Create a collection called zapdos with the documents in this directory:
/home/user/Documents/Chroma

AI Response:

The collection named "zapdos" has been successfully created or retrieved from the vector database
using the documents in the directory /home/user/Documents/Chroma.
Let me know if you'd like to perform any further actions, such as querying the collection or adding more documents!

Deleting Collection

AI Prompt:

Delete the collection called memory

AI Response:

The collection named "memory" has been successfully deleted.
Let me know if you'd like to create a new collection or perform any other actions!

A2A CLI

Endpoints

  • Web UI: http://localhost:8000/ (if enabled)
  • A2A: http://localhost:8000/a2a (Discovery: /a2a/.well-known/agent.json)
  • AG-UI: http://localhost:8000/ag-ui (POST)
Short Flag Long Flag Description
-h --help Display help information
--host Host to bind the server to (default: 0.0.0.0)
--port Port to bind the server to (default: 9000)
--reload Enable auto-reload
--provider LLM Provider: 'openai', 'anthropic', 'google', 'huggingface'
--model-id LLM Model ID (default: qwen3:4b)
--base-url LLM Base URL (for OpenAI compatible providers)
--api-key LLM API Key
--mcp-url MCP Server URL (default: http://localhost:8000/mcp)
--web Enable Pydantic AI Web UI

Deploy MCP Server as a Service

The MCP server can be deployed using Docker, with configurable authentication, middleware, and Eunomia authorization.

Using Docker Run

docker pull knucklessg1/vector-mcp:latest

docker run -d \
  --name vector-mcp \
  -p 8004:8004 \
  -e HOST=0.0.0.0 \
  -e PORT=8004 \
  -e TRANSPORT=http \
  -e AUTH_TYPE=none \
  -e EUNOMIA_TYPE=none \
  knucklessg1/vector-mcp:latest

For advanced authentication (e.g., JWT, OAuth Proxy, OIDC Proxy, Remote OAuth) or Eunomia, add the relevant environment variables:

docker run -d \
  --name vector-mcp \
  -p 8004:8004 \
  -e HOST=0.0.0.0 \
  -e PORT=8004 \
  -e TRANSPORT=http \
  -e AUTH_TYPE=oidc-proxy \
  -e OIDC_CONFIG_URL=https://provider.com/.well-known/openid-configuration \
  -e OIDC_CLIENT_ID=your-client-id \
  -e OIDC_CLIENT_SECRET=your-client-secret \
  -e OIDC_BASE_URL=https://your-server.com \
  -e ALLOWED_CLIENT_REDIRECT_URIS=http://localhost:*,https://*.example.com/* \
  -e EUNOMIA_TYPE=embedded \
  -e EUNOMIA_POLICY_FILE=/app/mcp_policies.json \
  knucklessg1/vector-mcp:latest

Using Docker Compose

Create a docker-compose.yml file:

services:
  vector-mcp:
    image: knucklessg1/vector-mcp:latest
    environment:
      - HOST=0.0.0.0
      - PORT=8004
      - TRANSPORT=http
      - AUTH_TYPE=none
      - EUNOMIA_TYPE=none
    ports:
      - 8004:8004

For advanced setups with authentication and Eunomia:

services:
  vector-mcp:
    image: knucklessg1/vector-mcp:latest
    environment:
      - HOST=0.0.0.0
      - PORT=8004
      - TRANSPORT=http
      - AUTH_TYPE=oidc-proxy
      - OIDC_CONFIG_URL=https://provider.com/.well-known/openid-configuration
      - OIDC_CLIENT_ID=your-client-id
      - OIDC_CLIENT_SECRET=your-client-secret
      - OIDC_BASE_URL=https://your-server.com
      - ALLOWED_CLIENT_REDIRECT_URIS=http://localhost:*,https://*.example.com/*
      - EUNOMIA_TYPE=embedded
      - EUNOMIA_POLICY_FILE=/app/mcp_policies.json
    ports:
      - 8004:8004
    volumes:
      - ./mcp_policies.json:/app/mcp_policies.json

Run the service:

docker-compose up -d

Configure mcp.json for AI Integration

{
  "mcpServers": {
    "vector_mcp": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "vector-mcp",
        "vector-mcp"
      ],
      "env": {
        "DATABASE_TYPE": "chromadb",                   // Optional
        "COLLECTION_NAME": "memory",                   // Optional
        "DOCUMENT_DIRECTORY": "/home/user/Documents/"  // Optional
      },
      "timeout": 300000
    }
  }
}

Install Python Package

python -m pip install vector-mcp

PGVector dependencies

python -m pip install vector-mcp[pgvector]

All

python -m pip install vector-mcp[all]

or

uv pip install --upgrade vector-mcp[all]

Repository Owners

GitHub followers GitHub User's stars

Special shoutouts to Microsoft Autogen V1 ♥️