Skip to content

Analyzed Netflix dataset (1,500 records) to discover trends in content types, genres, and release patterns using Python libraries.

Notifications You must be signed in to change notification settings

KuldeepSharma-DataAnalyst/Netflix_Data_Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🎬 Netflix Data Analysis using Python

πŸ“Œ Objective

Analyze Netflix’s dataset to find insights about movies, TV shows, genres, countries, and ratings.


🧰 Tools & Libraries

  • Python
  • Pandas
  • NumPy
  • Matplotlib
  • Seaborn
  • Jupyter Notebook

πŸ“Š Dataset Description

The dataset (netflix_data.csv) contains 1,500 records with columns like:

Column Description
show_id Unique identifier
type Movie or TV Show
title Title of the content
director Director name
country Country of production
date_added Date added on Netflix
release_year Release year
rating Age rating
duration Duration (min or seasons)
listed_in Genre
description Short content description

πŸ“ˆ Steps Performed

  1. Import and explore dataset
  2. Data cleaning and preparation
  3. Visualization of content trends
  4. Country and genre analysis
  5. Insights and conclusion

πŸ“‹ Insights

  • Netflix’s content has grown rapidly post-2015.
  • Movies slightly outnumber TV shows.
  • Top genres include Drama and Comedy.
  • USA and India dominate content creation.

πŸ’‘ Conclusion

This project highlights Netflix’s evolving global content strategy, genre diversity, and audience preferences.


πŸš€ How to Run

pip install -r requirements.txt
jupyter notebook Netflix_Data_Analysis.ipynb

About

Analyzed Netflix dataset (1,500 records) to discover trends in content types, genres, and release patterns using Python libraries.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published