Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 17 additions & 4 deletions modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,16 @@ def mask(inputs, queries=None, keys=None, type=None):

return outputs

def zero_padding_mask(inputs):
"""
:param inputs: (N, T, d)
:return:
"""
masks = tf.sign(tf.reduce_sum(tf.abs(inputs), axis=-1)) # (N, T)
masks = tf.expand_dims(masks, -1) # (N, T, 1)
masks = tf.tile(masks, [1, 1, tf.shape(inputs)[-1]]) # (N, T, d)
return masks

def multihead_attention(queries, keys, values,
num_heads=8,
dropout_rate=0,
Expand All @@ -178,10 +188,13 @@ def multihead_attention(queries, keys, values,
d_model = queries.get_shape().as_list()[-1]
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# Linear projections
Q = tf.layers.dense(queries, d_model, use_bias=False) # (N, T_q, d_model)
K = tf.layers.dense(keys, d_model, use_bias=False) # (N, T_k, d_model)
V = tf.layers.dense(values, d_model, use_bias=False) # (N, T_k, d_model)

Q = tf.layers.dense(queries, d_model, name="query_linproj") # (N, T_q, d_model)
Q = Q * zero_padding_mask(queries)
K = tf.layers.dense(keys, d_model, name="key_linproj") # (N, T_k, d_model)
K = K * zero_padding_mask(keys)
V = tf.layers.dense(values, d_model, name="value_linproj") # (N, T_k, d_model)
V = V * zero_padding_mask(values)

# Split and concat
Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h)
K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)
Expand Down