@@ -68,7 +68,7 @@ prediction = exp.(prediction_log)
68
68
plot (airp. passengers, w= 2 , color = " Black" , lab = " Historical" , legend = :outerbottom )
69
69
plot! (vcat (ones (length (log_air_passengers)).* NaN , prediction), lab = " Forecast" , w= 2 , color = " blue" )
70
70
```
71
- ![ quick_example_airp] ( ./docs/src/ assets/quick_example_airp.PNG)
71
+ ![ quick_example_airp] ( assets/quick_example_airp.PNG )
72
72
73
73
``` julia
74
74
N_scenarios = 1000
81
81
plot! (vcat (ones (length (log_air_passengers)).* NaN , exp .(simulation[:, N_scenarios])), lab = " Scenarios Paths" , α = 0.1 , color = " red" )
82
82
83
83
```
84
- ![ airp_sim] ( ./docs/src/ assets/airp_sim.svg)
84
+ ![ airp_sim] ( assets/airp_sim.svg )
85
85
86
86
### Component Extraction
87
87
Quick example on how to perform component extraction in time series utilizing StateSpaceLearning.
@@ -107,7 +107,7 @@ plot(seasonal, w=2 , color = "Black", lab = "Seasonal Component", legend = :oute
107
107
108
108
```
109
109
110
- | ![ quick_example_trend] ( ./docs/src/ assets/trend.svg) | ![ quick_example_seas] ( ./docs/src/ assets/seasonal.svg) |
110
+ | ![ quick_example_trend] ( assets/trend.svg ) | ![ quick_example_seas] ( assets/seasonal.svg ) |
111
111
| :------------------------------:| :-----------------------------:|
112
112
113
113
@@ -164,7 +164,7 @@ plot!(real_removed_valued, lab = "Real Removed Values", w=2, color = "red")
164
164
plot! (fitted_completed_missing_values, lab = " Fit in Sample completed values" , w= 2 , color = " blue" )
165
165
166
166
```
167
- ![ quick_example_completion_airp] ( ./docs/src/ assets/quick_example_completion_airp.PNG)
167
+ ![ quick_example_completion_airp] ( assets/quick_example_completion_airp.PNG )
168
168
169
169
### Outlier Detection
170
170
Quick example of outlier detection for an altered air passengers time-series (artificial NaN values are added to the original time-series).
@@ -190,7 +190,7 @@ plot(log_air_passengers, w=2 , color = "Black", lab = "Historical", legend = :ou
190
190
scatter! ([detected_outliers], log_air_passengers[detected_outliers], lab = " Detected Outliers" )
191
191
192
192
```
193
- ![ quick_example_completion_airp] ( ./docs/src/ assets/outlier.svg)
193
+ ![ quick_example_completion_airp] ( assets/outlier.svg )
194
194
195
195
### StateSpaceModels initialization
196
196
Quick example on how to use StateSpaceLearning to initialize StateSpaceModels
0 commit comments