Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "StateSpaceLearning"
uuid = "971c4b7c-2c4e-4bac-8525-e842df3cde7b"
authors = ["andreramosfc <[email protected]>"]
version = "1.2.0"
version = "1.3.0"

[deps]
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Expand Down
59 changes: 45 additions & 14 deletions src/fit_forecast.jl
Original file line number Diff line number Diff line change
Expand Up @@ -196,27 +196,25 @@ function simulate(
@assert seasonal_innovation_simulation >= 0 "seasonal_innovation_simulation must be a non-negative integer"
@assert isfitted(model) "Model must be fitted before simulation"

prediction = StateSpaceLearning.forecast(
model, steps_ahead; Exogenous_Forecast=Exogenous_Forecast
)
prediction = forecast(model, steps_ahead; Exogenous_Forecast=Exogenous_Forecast)

is_univariate = typeof(model.output) == StateSpaceLearning.Output
is_univariate = typeof(model.output) == Output

simulation_X = zeros(steps_ahead, 0)
valid_indexes =
is_univariate ? model.output.valid_indexes : model.output[1].valid_indexes
components_matrix = zeros(length(valid_indexes), 0)
N_components = 1

model_innovations = StateSpaceLearning.get_model_innovations(model)
model_innovations = get_model_innovations(model)
for innovation in model_innovations
simulation_X = hcat(
simulation_X,
StateSpaceLearning.get_innovation_simulation_X(model, innovation, steps_ahead)[
get_innovation_simulation_X(model, innovation, steps_ahead)[
(end - steps_ahead):(end - 1), (end - steps_ahead + 1):end
],
)
comp = StateSpaceLearning.fill_innovation_coefs(model, innovation, valid_indexes)
comp = fill_innovation_coefs(model, innovation, valid_indexes)
components_matrix = hcat(components_matrix, comp)
N_components += 1
end
Expand All @@ -242,7 +240,11 @@ function simulate(
end

if seasonal_innovation_simulation == 0
∑ = cov(components_matrix)
∑ = if is_univariate
Diagonal([var(components_matrix[:, i]) for i in 1:N_components])
else
Diagonal([var(components_matrix[:, i]) for i in 1:N_mv_components])
end
for i in 1:steps_ahead
MV_dist_vec[i] = if is_univariate
MvNormal(zeros(N_components), ∑)
Expand Down Expand Up @@ -270,12 +272,27 @@ function simulate(
end
else
start_seasonal_term = (size(components_matrix, 1) % seasonal_innovation_simulation)
for i in 1:steps_ahead
∑ = cov(
components_matrix[
(i + start_seasonal_term):seasonal_innovation_simulation:end, :,
],
)
for i in 1:seasonal_innovation_simulation
∑ = if is_univariate
Diagonal([
var(
components_matrix[
(i + start_seasonal_term):seasonal_innovation_simulation:end,
j,
],
) for j in 1:N_components
])
else
Diagonal([
var(
components_matrix[
(i + start_seasonal_term):seasonal_innovation_simulation:end,
j,
],
) for j in 1:N_mv_components
])
end

MV_dist_vec[i] = if is_univariate
MvNormal(zeros(N_components), ∑)
else
Expand Down Expand Up @@ -313,6 +330,20 @@ function simulate(
end
end
end
for i in (seasonal_innovation_simulation + 1):steps_ahead
MV_dist_vec[i] = MV_dist_vec[i - seasonal_innovation_simulation]
if model.outlier
if is_univariate
o_noises[i, :] = o_noises[i - seasonal_innovation_simulation, :]
else
for j in eachindex(model.output)
o_noises[j][i, :] = o_noises[j][
i - seasonal_innovation_simulation, :,
]
end
end
end
end
end

simulation = if is_univariate
Expand Down
Loading