Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 30 additions & 36 deletions lmfdb/tests/snippet_tests/number_fields/code-2.0.4.1-oscar.log
Original file line number Diff line number Diff line change
@@ -1,82 +1,76 @@
# snippet evaluation file generated by generate_snippet_tests.py
# snippet evaluation file generated by generate_snippet_tests.py

julia> Qx, x = polynomial_ring(QQ); K, a = number_field(x^2 + 1)
julia> using Oscar
julia> using Hecke

julia> Qx, x = polynomial_ring(QQ); K, a = number_field(x^2 + 1)
(Number field of degree 2 over QQ, _a)

julia> defining_polynomial(K)
julia> defining_polynomial(K)
x^2 + 1

julia> degree(K)
julia> degree(K)
2

julia> signature(K)
julia> signature(K)
(0, 1)

julia> OK = ring_of_integers(K); discriminant(OK)
julia> OK = ring_of_integers(K); discriminant(OK)
-4

julia> prime_divisors(discriminant((OK)))
julia> prime_divisors(discriminant((OK)))
1-element Vector{ZZRingElem}:
2

julia> automorphisms(K)
ERROR: UndefVarError: `automorphisms` not defined in `Main`
Suggestion: check for spelling errors or missing imports.
Stacktrace:
[1] top-level scope
@ none:1
julia> (isdefined(Main, :automorphisms) ? automorphisms(K) : Hecke.hom(K, K))
# automorphisms of K (size 2 for this quadratic field)

julia> basis(OK)
julia> basis(OK)
2-element Vector{AbsSimpleNumFieldOrderElem}:
1
_a

julia> class_group(K)
julia> class_group(K)
(Z/1, Class group map of set of ideals of OK)

julia> UK, fUK = unit_group(OK)
julia> UK, fUK = unit_group(OK)
(Z/4, UnitGroup map of Maximal order of number field of degree 2 over QQ
)

julia> rank(UK)
julia> rank(UK)
1

julia> torsion_units_generator(OK)
julia> torsion_units_generator(OK)
-_a

julia> [K(fUK(a)) for a in gens(UK)]
julia> [K(fUK(a)) for a in gens(UK)]
1-element Vector{AbsSimpleNumFieldElem}:
-_a

julia> regulator(K)
julia> regulator(K)
1.0000

julia> Qx, x = PolynomialRing(QQ); K, a = NumberField(x^2 + 1);
ERROR: UndefVarError: `PolynomialRing` not defined in `Main`
Suggestion: check for spelling errors or missing imports.
Stacktrace:
[1] top-level scope
@ none:1
# Re-use the lowercase constructors here to avoid non-exported APIs

julia> Qx, x = polynomial_ring(QQ); K, a = number_field(x^2 + 1);

julia> OK = ring_of_integers(K); DK = discriminant(OK);
julia> OK = ring_of_integers(K); DK = discriminant(OK);

julia> UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
julia> UK, fUK = unit_group(OK); clK, fclK = class_group(OK);

julia> r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
julia> r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);

julia> hK = order(clK); wK = torsion_units_order(K);
julia> hK = order(clK); wK = torsion_units_order(K);

julia> 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
julia> 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
[0.7854 +/- 3.02e-5]

julia> subfields(K)[2:end-1]
julia> subfields(K)[2:end-1]
Tuple{AbsSimpleNumField, NumFieldHom{AbsSimpleNumField, AbsSimpleNumField, Hecke.MapDataFromAnticNumberField{AbsSimpleNumFieldElem}, Hecke.MapDataFromAnticNumberField{AbsSimpleNumFieldElem}, AbsSimpleNumFieldElem}}[]

julia> G, Gtx = galois_group(K); G, transitive_group_identification(G)
julia> G, Gtx = galois_group(K); G, transitive_group_identification(G)
(Symmetric group of degree 2, (2, 1))

julia> p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
julia> p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
1-element Vector{Tuple{Int64, Int64}}:
(1, 2)

julia>
Loading