Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 17 additions & 97 deletions blockchain/diophantine_equation.py
Original file line number Diff line number Diff line change
@@ -1,109 +1,29 @@
from __future__ import annotations

from maths.greatest_common_divisor import greatest_common_divisor
def gcd(a: int, b: int) -> int:

Check failure on line 3 in blockchain/diophantine_equation.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (I001)

blockchain/diophantine_equation.py:1:1: I001 Import block is un-sorted or un-formatted
while b:
a, b = b, a % b
return a

def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
if b == 0:
return a, 1, 0
d, x, y = extended_gcd(b, a % b)
return d, y, x - (a // b) * y

def diophantine(a: int, b: int, c: int) -> tuple[float, float]:
"""
Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the
diophantine equation a*x + b*y = c has a solution (where x and y are integers)
iff greatest_common_divisor(a,b) divides c.

GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )

>>> diophantine(10,6,14)
(-7.0, 14.0)

>>> diophantine(391,299,-69)
(9.0, -12.0)

But above equation has one more solution i.e., x = -4, y = 5.
That's why we need diophantine all solution function.

"""

assert (
c % greatest_common_divisor(a, b) == 0
) # greatest_common_divisor(a,b) is in maths directory
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below
d = gcd(a, b)
assert c % d == 0
x, y = extended_gcd(a, b)[1:]
r = c / d
return (r * x, r * y)

return r * x, r * y

def diophantine_all_soln(a: int, b: int, c: int, n: int = 2) -> None:
"""
Lemma : if n|ab and gcd(a,n) = 1, then n|b.

Finding All solutions of Diophantine Equations:

Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of
Diophantine Equation a*x + b*y = c. a*x0 + b*y0 = c, then all the
solutions have the form a(x0 + t*q) + b(y0 - t*p) = c,
where t is an arbitrary integer.

n is the number of solution you want, n = 2 by default

>>> diophantine_all_soln(10, 6, 14)
-7.0 14.0
-4.0 9.0

>>> diophantine_all_soln(10, 6, 14, 4)
-7.0 14.0
-4.0 9.0
-1.0 4.0
2.0 -1.0

>>> diophantine_all_soln(391, 299, -69, n = 4)
9.0 -12.0
22.0 -29.0
35.0 -46.0
48.0 -63.0

"""
(x0, y0) = diophantine(a, b, c) # Initial value
d = greatest_common_divisor(a, b)
p = a // d
q = b // d

x0, y0 = diophantine(a, b, c)
p, q = a // gcd(a, b), b // gcd(a, b)
for i in range(n):
x = x0 + i * q
y = y0 - i * p
print(x, y)


def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
"""
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers
x and y, then d = gcd(a,b)

>>> extended_gcd(10, 6)
(2, -1, 2)

>>> extended_gcd(7, 5)
(1, -2, 3)

"""
assert a >= 0
assert b >= 0

if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)

assert a % d == 0
assert b % d == 0
assert d == a * x + b * y

return (d, x, y)

print(x0 + i * q, y0 - i * p)

if __name__ == "__main__":
from doctest import testmod

testmod(name="diophantine", verbose=True)
testmod(name="diophantine_all_soln", verbose=True)
testmod(name="extended_gcd", verbose=True)
testmod(name="greatest_common_divisor", verbose=True)
testmod()
Loading