Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions src/lightning/pytorch/loggers/wandb.py
Original file line number Diff line number Diff line change
Expand Up @@ -322,7 +322,7 @@ def __init__(
self._prefix = prefix
self._experiment = experiment
self._logged_model_time: dict[str, float] = {}
self._checkpoint_callback: Optional[ModelCheckpoint] = None
self._checkpoint_callbacks: dict[int, ModelCheckpoint] = {}

# paths are processed as strings
if save_dir is not None:
Expand Down Expand Up @@ -591,7 +591,7 @@ def after_save_checkpoint(self, checkpoint_callback: ModelCheckpoint) -> None:
if self._log_model == "all" or self._log_model is True and checkpoint_callback.save_top_k == -1:
self._scan_and_log_checkpoints(checkpoint_callback)
elif self._log_model is True:
self._checkpoint_callback = checkpoint_callback
self._checkpoint_callbacks[id(checkpoint_callback)] = checkpoint_callback

@staticmethod
@rank_zero_only
Expand Down Expand Up @@ -644,8 +644,9 @@ def finalize(self, status: str) -> None:
# Currently, checkpoints only get logged on success
return
# log checkpoints as artifacts
if self._checkpoint_callback and self._experiment is not None:
self._scan_and_log_checkpoints(self._checkpoint_callback)
if self._experiment is not None:
for checkpoint_callback in self._checkpoint_callbacks.values():
self._scan_and_log_checkpoints(checkpoint_callback)

def _scan_and_log_checkpoints(self, checkpoint_callback: ModelCheckpoint) -> None:
import wandb
Expand Down
38 changes: 38 additions & 0 deletions tests/tests_pytorch/loggers/test_wandb.py
Original file line number Diff line number Diff line change
Expand Up @@ -426,6 +426,44 @@ def test_wandb_log_model(wandb_mock, tmp_path):
)
wandb_mock.init().log_artifact.assert_called_with(wandb_mock.Artifact(), aliases=["latest", "best"])

# Test wandb artifact with two checkpoint_callbacks
wandb_mock.init().log_artifact.reset_mock()
wandb_mock.init.reset_mock()
wandb_mock.Artifact.reset_mock()
logger = WandbLogger(save_dir=tmp_path, log_model=True)
logger.experiment.id = "1"
logger.experiment.name = "run_name"
trainer = Trainer(
default_root_dir=tmp_path,
logger=logger,
max_epochs=3,
limit_train_batches=3,
limit_val_batches=3,
callbacks=[
ModelCheckpoint(monitor="epoch", save_top_k=2),
ModelCheckpoint(monitor="step", save_top_k=2),
],
)
trainer.fit(model)
for name, val, version in [("epoch", 0, 2), ("step", 3, 3)]:
wandb_mock.Artifact.assert_any_call(
name="model-1",
type="model",
metadata={
"score": val,
"original_filename": f"epoch=0-step=3-v{version}.ckpt",
"ModelCheckpoint": {
"monitor": name,
"mode": "min",
"save_last": None,
"save_top_k": 2,
"save_weights_only": False,
"_every_n_train_steps": 0,
},
},
)
wandb_mock.init().log_artifact.assert_any_call(wandb_mock.Artifact(), aliases=["latest"])


def test_wandb_log_model_with_score(wandb_mock, tmp_path):
"""Test to prevent regression on #15543, ensuring the score is logged as a Python number, not a scalar tensor."""
Expand Down
Loading