Skip to content
61 changes: 61 additions & 0 deletions src/lightning/pytorch/callbacks/device_stats_monitor.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,67 @@ class DeviceStatsMonitor(Callback):
r"""Automatically monitors and logs device stats during training, validation and testing stage.
``DeviceStatsMonitor`` is a special callback as it requires a ``logger`` to passed as argument to the ``Trainer``.

**Logged Metrics**

Logs device statistics with keys prefixed as ``DeviceStatsMonitor.{hook_name}/{base_metric_name}``.
The actual metrics depend on the active accelerator and the ``cpu_stats`` flag. Below are an overview of the
possible available metrics and their meaning.

- CPU (via ``psutil``)

- ``cpu_percent`` — System-wide CPU utilization (%)
- ``cpu_vm_percent`` — System-wide virtual memory (RAM) utilization (%)
- ``cpu_swap_percent`` — System-wide swap memory utilization (%)

- CUDA GPU (via ``torch.cuda.memory_stats``)

Logs memory statistics from PyTorch caching allocator (all in bytes).
GPU compute utilization is not logged by default.

- General Memory Usage:

- ``allocated_bytes.all.current`` — Current allocated GPU memory
- ``allocated_bytes.all.peak`` — Peak allocated GPU memory
- ``reserved_bytes.all.current`` — Current reserved GPU memory (allocated + cached)
- ``reserved_bytes.all.peak`` — Peak reserved GPU memory
- ``active_bytes.all.current`` — Current GPU memory in active use
- ``active_bytes.all.peak`` — Peak GPU memory in active use
- ``inactive_split_bytes.all.current`` — Memory in inactive, splittable blocks

- Allocator Pool Statistics* (for ``small_pool`` and ``large_pool``):

- ``allocated_bytes.{pool_type}.current`` / ``allocated_bytes.{pool_type}.peak``
- ``reserved_bytes.{pool_type}.current`` / ``reserved_bytes.{pool_type}.peak``
- ``active_bytes.{pool_type}.current`` / ``active_bytes.{pool_type}.peak``

- Allocator Events:

- ``num_ooms`` — Cumulative out-of-memory errors
- ``num_alloc_retries`` — Number of allocation retries
- ``num_device_alloc`` — Number of device allocations
- ``num_device_free`` — Number of device deallocations

For a full list of CUDA memory stats, see the
`PyTorch documentation <https://pytorch.org/docs/stable/generated/torch.cuda.memory_stats.html>`_.

- TPU (via ``torch_xla``)

- *Memory Metrics* (per device, e.g., ``xla:0``):

- ``memory.free.xla:0`` — Free HBM memory (MB)
- ``memory.used.xla:0`` — Used HBM memory (MB)
- ``memory.percent.xla:0`` — Percentage of HBM memory used (%)

- *XLA Operation Counters*:

- ``CachedCompile.xla``
- ``CreateXlaTensor.xla``
- ``DeviceDataCacheMiss.xla``
- ``UncachedCompile.xla``
- ``xla::add.xla``, ``xla::addmm.xla``, etc.

These counters can be retrieved using: ``torch_xla.debug.metrics.counter_names()``

Args:
cpu_stats: if ``None``, it will log CPU stats only if the accelerator is CPU.
If ``True``, it will log CPU stats regardless of the accelerator.
Expand Down
Loading