Skip to content

LuisParedes1/aprendizaje-automatico

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Twitter Emotional Classifier

The following project takes the tweets from the Twitter Emotion Classification Datase and trains a classifier model that labels a tweet in one of the following 5 categories

Index Emotion
0 sadness
1 joy
2 love
3 anger
4 fear
5 surprise

We evaluated with the following classification models

  • Logistic Regression Classifier
  • Multinomial Naive Bayes Classifier
  • Extra Trees Classifier

Frontend

Simple Next.js project to use as new Tweet input

To run the frontend, inside /frontend folder, run:

npm run dev

Then go to http://localhost:3000/

Backend

The backend uses the trained model along with the vectorizer to classify the Tweet.

To run the backend, inside /backend folder, run:

fastapi dev main.py

Then go to http://127.0.0.1:8000/docs

Running with docker-compose

You can also run the project using docker-compose. Fron root folder run:

docker-compose build

Then run

docker-compose up

About

TP de aprendizaje automatico desarrollado durante la cursada del 2C-2024

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published