The objective of the repository is to learn and build machine learning models using Pytorch.
List of Algorithms Covered
📌 Day 1 - Linear Regression 
📌 Day 2 - Logistic Regression 
📌 Day 3 - Decision Tree 
📌 Day 4 - KMeans Clustering 
📌 Day 5 - Naive Bayes 
📌 Day 6 - K Nearest Neighbour (KNN) 
📌 Day 7 - Support Vector Machine 
📌 Day 8 - Tf-Idf Model 
📌 Day 9 - Principal Components Analysis 
📌 Day 10 - Lasso and Ridge Regression 
📌 Day 11 - Gaussian Mixture Model 
📌 Day 12 - Linear Discriminant Analysis 
📌 Day 13 - Adaboost Algorithm 
📌 Day 14 - DBScan Clustering 
📌 Day 15 - Multi-Class LDA 
📌 Day 16 - Bayesian Regression 
📌 Day 17 - K-Medoids 
📌 Day 18 - TSNE 
📌 Day 19 - ElasticNet Regression 
📌 Day 20 - Spectral Clustering 
📌 Day 21 - Latent Dirichlet 
📌 Day 22 - Affinity Propagation 
📌 Day 23 - Gradient Descent Algorithm 
📌 Day 24 - Regularization Techniques 
📌 Day 25 - RANSAC Algorithm 
📌 Day 26 - Normalizations 
📌 Day 27 - Multi-Layer Perceptron 
📌 Day 28 - Activations 
📌 Day 29 - Optimizers 
📌 Day 30 - Loss Functions
- Sklearn Library
- ML-Glossary
- ML From Scratch (Github)
