-
Notifications
You must be signed in to change notification settings - Fork 2.8k
[3.6] Rsa: use the CRT to generate base blinding values #10513
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: mbedtls-3.6
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -1268,6 +1268,93 @@ int mbedtls_rsa_public(mbedtls_rsa_context *ctx, | |
| return 0; | ||
| } | ||
|
|
||
| #if !defined(MBEDTLS_RSA_NO_CRT) | ||
| /* | ||
| * Compute T such that T = TP mod P and T = TP mod Q. | ||
| * (This is the Chinese Remainder Theorem - CRT.) | ||
| * | ||
| * WARNING: uses TP as a temporary, so its value is lost! | ||
| */ | ||
| static int rsa_apply_crt(mbedtls_mpi *T, | ||
| mbedtls_mpi *TP, | ||
| const mbedtls_mpi *TQ, | ||
| const mbedtls_rsa_context *ctx) | ||
| { | ||
| int ret; | ||
|
|
||
| /* | ||
| * T = (TP - TQ) * (Q^-1 mod P) mod P | ||
| */ | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(T, TP, TQ)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(TP, T, &ctx->QP)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(T, TP, &ctx->P)); | ||
|
|
||
| /* | ||
| * T = TQ + T * Q | ||
| */ | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(TP, T, &ctx->Q)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(T, TQ, TP)); | ||
|
|
||
| cleanup: | ||
| return ret; | ||
| } | ||
| #endif | ||
|
|
||
| /* Generate random A and B such that A^-1 = B mod N */ | ||
| static int rsa_gen_rand_with_inverse(const mbedtls_rsa_context *ctx, | ||
| mbedtls_mpi *A, | ||
| mbedtls_mpi *B, | ||
| int (*f_rng)(void *, unsigned char *, size_t), | ||
| void *p_rng) | ||
| { | ||
| #if defined(MBEDTLS_RSA_NO_CRT) | ||
| int ret, count = 0; | ||
| mbedtls_mpi G; | ||
|
|
||
| mbedtls_mpi_init(&G); | ||
|
|
||
| mbedtls_mpi_lset(&G, 0); | ||
| do { | ||
| if (count++ > 10) { | ||
| ret = MBEDTLS_ERR_RSA_RNG_FAILED; | ||
| goto cleanup; | ||
| } | ||
|
|
||
| MBEDTLS_MPI_CHK(mbedtls_mpi_random(A, 1, &ctx->N, f_rng, p_rng)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(&G, B, A, &ctx->N)); | ||
| } while (mbedtls_mpi_cmp_int(&G, 1) != 0); | ||
|
|
||
| cleanup: | ||
| mbedtls_mpi_free(&G); | ||
|
|
||
| return ret; | ||
| #else | ||
| int ret; | ||
| mbedtls_mpi Ap, Aq, Bp, Bq; | ||
|
|
||
| mbedtls_mpi_init(&Ap); mbedtls_mpi_init(&Aq); | ||
| mbedtls_mpi_init(&Bp); mbedtls_mpi_init(&Bq); | ||
|
|
||
| /* Generate Ap in [1, P) and compute Bp = Ap^-1 mod P */ | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_random(&Ap, 1, &ctx->P, f_rng, p_rng)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, &Bp, &Ap, &ctx->P)); | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If P is not actually prime, there is a chance that Ap is not invertible mod P, and Bp is “indeterminate” according to the documentation of An RSA key should have probable primes as P and Q, so the probability of finding a factor is very small. However, it bothers me that we aren't checking this. Especially since the old code did check (the condition G=1 catches multiple of P or Q for a perfect RSA key, but also more generally any value that isn't invertible mod N). In both cases, I'd be ok with erroring immediately out if A turns out not to be invertible, or to try a few iterations. I don't see a reason why the number of retries would be different with a single random value or with two: the case of a multiple of P or Q has negligible probability, so it doesn't really make a difference in terms of expected retries to find a suitable A. |
||
|
|
||
| /* Generate Ap in [1, Q) and compute Bq = Aq^-1 mod P */ | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_random(&Aq, 1, &ctx->Q, f_rng, p_rng)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, &Bq, &Aq, &ctx->Q)); | ||
|
|
||
| /* Reconstruct A and B */ | ||
| MBEDTLS_MPI_CHK(rsa_apply_crt(A, &Ap, &Aq, ctx)); | ||
| MBEDTLS_MPI_CHK(rsa_apply_crt(B, &Bp, &Bq, ctx)); | ||
|
|
||
| cleanup: | ||
| mbedtls_mpi_free(&Ap); mbedtls_mpi_free(&Aq); | ||
| mbedtls_mpi_free(&Bp); mbedtls_mpi_free(&Bq); | ||
|
|
||
| return ret; | ||
| #endif | ||
| } | ||
|
|
||
| /* | ||
| * Generate or update blinding values, see section 10 of: | ||
| * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA, | ||
|
|
@@ -1277,41 +1364,25 @@ int mbedtls_rsa_public(mbedtls_rsa_context *ctx, | |
| static int rsa_prepare_blinding(mbedtls_rsa_context *ctx, | ||
| int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) | ||
| { | ||
| int ret, count = 0; | ||
| mbedtls_mpi R; | ||
|
|
||
| mbedtls_mpi_init(&R); | ||
| int ret; | ||
|
|
||
| if (ctx->Vf.p != NULL) { | ||
| /* We already have blinding values, just update them by squaring */ | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N)); | ||
|
|
||
| goto cleanup; | ||
| } | ||
|
|
||
| /* Unblinding value: Vf = random number, invertible mod N */ | ||
| mbedtls_mpi_lset(&R, 0); | ||
| do { | ||
| if (count++ > 10) { | ||
| ret = MBEDTLS_ERR_RSA_RNG_FAILED; | ||
| goto cleanup; | ||
| } | ||
|
|
||
| MBEDTLS_MPI_CHK(mbedtls_mpi_random(&ctx->Vf, 1, &ctx->N, f_rng, p_rng)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(&R, &ctx->Vi, &ctx->Vf, &ctx->N)); | ||
| } while (mbedtls_mpi_cmp_int(&R, 1) != 0); | ||
| MBEDTLS_MPI_CHK(rsa_gen_rand_with_inverse(ctx, &ctx->Vf, &ctx->Vi, f_rng, p_rng)); | ||
|
|
||
| /* Blinding value: Vi = Vf^(-e) mod N | ||
| * (Vi already contains Vf^-1 at this point) */ | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN)); | ||
|
|
||
|
|
||
| cleanup: | ||
| mbedtls_mpi_free(&R); | ||
|
|
||
| return ret; | ||
| } | ||
|
|
||
|
|
@@ -1511,19 +1582,7 @@ int mbedtls_rsa_private(mbedtls_rsa_context *ctx, | |
|
|
||
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, &DP_blind, &ctx->P, &ctx->RP)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, &DQ_blind, &ctx->Q, &ctx->RQ)); | ||
|
|
||
| /* | ||
| * T = (TP - TQ) * (Q^-1 mod P) mod P | ||
| */ | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P)); | ||
|
|
||
| /* | ||
| * T = TQ + T * Q | ||
| */ | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q)); | ||
| MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP)); | ||
| MBEDTLS_MPI_CHK(rsa_apply_crt(&T, &TP, &TQ, ctx)); | ||
| #endif /* MBEDTLS_RSA_NO_CRT */ | ||
|
|
||
| /* Verify the result to prevent glitching attacks. */ | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We're fixing a performance regression in an LTS branch, so this needs a changelog entry.